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Preface

WORK IN PROGRESS

This booklet is an exposition on the Lebesgue integral. I originally started it as
a set of notes consolidating what I had learned on on Lebesgue integration theory,
and published them in case somebody else may find them useful.

I welcome any comments or inquiries on this document. You can reach me by
e-mail at 〈steve@gold-saucer.org〉.

0.1 Philosophy

Since there are already countless books on measure theory and integration written
by professional mathematicians, that teach the same things on the basic level, you
may be wondering why you should be reading this particular one, considering that
it is so blatantly informally written.

Ease of reading. Actually, I believe the informality to be quite appropriate, and
integral — pun intended — to this work. For me, this booklet is also an experiment
to write an engaging, easy-to-digest mathematical work that people would want
to read in my spare time. I remember, once in my second year of university, after
my professor off-handed mentioned Lebesgue integration as a “nicer theory” than
the Riemann integration we had been learning, I dashed off to the library eager to
learn more. The books I had found there, however, were all fixated on the stiff,
abstract theory — which, unsurprisingly, was impenetrable for a wide-eyed second-
year student flipping through books in his spare time. I still wonder if other budding
mathematics students experience the same disappointment that I did. If so, I would
like this book to be a partial remedy.

Motivational. I also find that the presentation in many of the mathematics books
I encounter could be better, or at least, they are not to my taste. Many are written
with hardly any motivating examples or applications. For example, it is evident that
the concepts introduced in linear functional analysis have something to do with
problems arising in mathematical physics, but “pure” mathematical works on the
subject too often tend to hide these origins and applications. Perhaps, they may be
obvious to the learned reader, but not always for the student who is only starting
his exploration of the diverse areas of mathematics.

iv



0. Preface: Special thanks v

Rigor. On the other hand, in this work I do not want to go to the other extreme,
which is the tendency for some applied mathematics books to be unabashedly un-
rigorous. Or worse, pure deception: they present arguments with unstated assump-
tions, and impress on students, by naked authority, that everything they present is
perfectly correct. Needless to say, I do not hold such books in very high regard, and
probably you may not either. This work will be rigorous and precise, and of course,
you can always confirm with the references.

0.2 Special thanks



Organization of this book

The material presented in this book is selected and organized differently than many
other mathematics books.

Level of abstraction. The emphasis is on a healthy dose of abstraction which is
backed by useful applications. Not so abstract as to get us bogged down by details,
but abstract enough so that results can be stated elegantly, concisely and effectively.

Style of exposition. We favor a style of writing, for both the main text and the
proofs, that is more wordy than terse and formal. Thus some material may appear
to take up a lot of pages, but is actually quick to read through.

Order of presentation. To make the material easier to digest, the theory is some-
times not developed in a strict logical order. Some results will be stated and used,
before going back and formally proving them in later sections. It seems to work
well, I think.

Order for reading. I almost never read any non-fiction books linearly from front
to back, and mathematics books are no exception. Thus I have tried writing to facil-
itate skipping around sections and reading “on the go”.

Exercises. At the end of each chapter, there are exercises that I have culled from
standard results and my own experience. As I am a practitioner, not a researcher, I
am afraid I will not be able to provide many of the pathological exercises found in
the more hard-core books. Nevertheless, I hope my exercises turn out to be interest-
ing.

Prerequisites. The minimal prerequisites for understanding this work is a thor-
ough understanding of elementary calculus, though at various points of the text we
will definitely need the concepts and results from topology, linear algebra, multi-
variate calculus, and functional analysis.

If you have not encountered these topics before, then you probably should en-
deavour to learn them. Understandably, that will take you time; so this text contains
an appendix listing the results that we will need — it may serve as a guide and mo-
tivation towards further study.

Level of coverage. My aim is to provide a reasonably complete treatment of the
material, yet leave various topics ready for individual exploration.

Perhaps you may be unsatisfied with my approach. Actually, even if I could just
arouse your interest in measure theory or any other mathematical topic through this
work, then I think I have done something useful.

vi



Chapter 1

Motivation for Lebesgue integral

The Lebesgue integral, introduced by Henri Lebesgue in his 1902 dissertation, “Intégrale,
longueur, aire”, is a generalization of the Riemann integral usually studied in ele-
mentary calculus.

If you have followed the rigorous definition of the Riemann integral in R or Rn,
you may be wondering why do we need to study yet another integral. After all,
why should we even care to integrate nasty things like the Dirichlet function:

D(x) =

{
1 , x ∈ Q

0 , x ∈ R \Q .

There are several convincing arguments for studying Lebesgue integration the-
ory.

Closure of operations. Recall the first times you had ever heard of the concepts
of negative numbers, irrational numbers, and complex numbers. At the time, you
most likely had thought, privately if not announced publically, that there is no such
use for “numbers less than nothing”, “numbers with an infinite amount of deci-
mal places” (that we approximate in calculation with a finite amount anyway), and
“imaginary numbers” whose square is negative. Yet negative numbers, irrational
numbers, and complex numbers find their use because these kinds of numbers are
closed under certain operations — namely, the operations of subtraction, taking least
upper bounds, and polynomial roots. Thus equations involving more “ordinary”
quantities can be posed and solved, without putting the special cases or artificial
restrictions that would be necessary had the number system not been extended ap-
propriately.

The Lebesgue integral has the similar relation to the Riemann integral. For in-
stance, the D function above can be considered to be the infinite sum

D(x) =
∞

∑
n=1

En(x) , En(x) =

{
1 , x = xn

0 , x 6= xn ,

where {xn}∞
n=1 is any listing of the members of Q. The function D is not Riemann-

integrable, yet each function En is. So, in general, the limit of Riemann-integrable

1



1. Motivation for Lebesgue integral: 2

functions is not necessarily Riemann-integrable; the class of Riemann-integrable
functions is not closed under taking limits.

This failure of the closure causes all sorts of problems, not the least of which is
deciding when exactly the following interchange of limiting operations, is valid:

lim
n→∞

∫
fn(x) dx =

∫
lim
n→∞

fn(x) dx .

In elementary calculus, the interchange of the limit and integral, over a closed
and bounded interval [a, b], is proven to be valid when the sequence of functions
{ fn} is uniformly convergent. However, in many calculations that require exchang-
ing the limit and integral, uniform convergence is often too onerous a condition to
require, or we are integrating on unbounded intervals. In this case, the calculus
theorem is not of much help — but, in fact, one of the important, and much ap-
plied, theorems by Henri Lebesgue, called the dominated convergence theorem, gives
practical conditions for which the interchange is valid.

It is true that, if a function is Riemann-integrable, then it is Lebesgue-integrable,
and so theorems about the Lebesgue integral could in principle be rephrased as
results for the Riemann integral, with some restrictions on the functions to be in-
tegrated. Yet judging from the fact that calculus books almost never do actually
attempt to prove the dominated convergence theorem, and that the theorem was
originally discovered through measure theory methods, it seems fair to say that a
proof using elementary Riemann-integral methods may be close to impossible.

Abstraction is more efficient. There is also an argument for preferring the Lebesgue
integral because it is more abstract. As with many abstractions in mathematics, there
is an up-front investment cost to be paid, but the pay-off in effectiveness is enor-
mous. Cumbersome manipulations of Riemann integrals can be replaced by concise
arguments involving Lebesgue integrals.

The dominated convergence theorem mentioned above is one example of the power
of Lebesgue integrals; here we illustrate another one. Consider evaluating the Gaus-
sian probability integral: ∫ +∞

−∞
e−

1
2 x2

dx .

The derivation usually goes like this:(∫ +∞

−∞
e−

1
2 x2

dx
)2

=
∫ +∞

−∞
e−

1
2 x2

dx
∫ +∞

−∞
e−

1
2 y2

dy

=
∫ +∞

−∞

∫ +∞

−∞
e−

1
2 (x2+y2) dx dy

=
∫

R2
e−

1
2 (x2+y2) dx dy

=
∫ 2π

0

∫ ∞

0
e−

1
2 r2

r dr dθ (using polar coordinates)

= 2π
[
−e−

1
2 r2
]r=∞

r=0

= 2π .
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So ∫ +∞

−∞
e−

1
2 x2

dx =
√

2π .

The above computation looks to be easy, and although it can be justified using
the Riemann integral alone, the explanation is quite clumsy. Here are some ques-
tions to ask: Why should

∫ +∞
−∞

∫ +∞
−∞ be the same as

∫
R2? Is the polar coordinate

transformation valid over the unbounded domain R2? Note that while most calcu-
lus books do systematically develop the theory of the Riemann integral over bounded
sets of integration, the Riemann integral over unbounded sets is usually treated in an
ad-hoc manner, and it is not always clear when the theorems proven for bounded
sets of integration apply to unbounded sets also.

On the other hand, the Lebesgue integral makes no distinction between bounded
and unbounded sets in integration, and the full power of the standard theorems
apply equally to both cases. As you will see, the proper abstract development of the
Lebesgue integral also simplifies the proofs of the theorems regarding interchanging
the order of integration and differential coordinate transformation.

New applications. Finally, with abstraction comes new areas to which the inte-
gral can be applied. There are many of these, but here we will briefly touch on a
few.

The Lebesgue theory is not restricted to integrating functions over lengths, areas
or volumes of Rn. We can specify beforehand a measure µ on some space X, and
Lebesgue theory provides the tools to define, and possibly compute, the integral∫

X
f dµ ,

that represents, loosely, a limit of integral sums

∑
i

f (xi) µ(Ai) , {Ai} is a partition of X, and xi is a point in Ai.

When integrating over Rn with the Lebesgue measure, the quantity µ(Ai) is simply
the area or volume of the set Ai, but in general, other measure functions A 7→ µ(A)
could be used as well.

By choosing different measures µ, we can define the Lebesgue integral over
curves and surfaces in Rn, thereby uniting the disparate definitions of the line, area,
and volume integrals in multivariate calculus.

In functional analysis, Lebesgue integrals are used to represent certain linear
functionals. For example, the continuous dual space of C[a, b], the space of contin-
uous functions on the interval [a, b] is in one-to-one correspondence with a certain
family of measures on the space [a, b]. This fact was actually proven in 1909 by
Frigyes Riesz, using the Riemann-Stieltjes integral, a generalization of the Riemann
integral — but the result is more elegantly interpreted using the Lebesgue theory.

And finally, the Lebesgue integral is indispensable in the rigorous study of prob-
ability theory. A probability measure behaves analogously to an area measure, and
in fact a probability measure is a measure in the Lebesgue sense.
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Having given a small survey of the topic of Lebesgue integration, we now pro-
ceed to formulate the fundamental definitions.



Chapter 2

Basic definitions

This chapter describes the Lebesgue integral and the basic machinery associated
with it.

2.1 Measurable spaces

Before we can define the protagonist of our story, the Lebesgue integral, we will
need to describe its setting, that of measurable spaces and measures.

We are given some function µ of sets which returns the area or volume — for-
mally called the measure — of the given set. That is, we assume at the beginning that
such a function µ has already been defined for us. This axiomatic approach has the
obvious advantage that the theory can be applied to many other measures besides
volume in Rn. We have the benefit of hindsight, of course. Lebesgue himself did
not work so abstractly, and it was Maurice Fréchet who first pointed out the gener-
alizations of the concrete methods of Lebesgue and his contemporaries that are now
standard.

A general domain that can be taken for the function µ is a σ-algebra, defined
below.

2.1.1 DEFINITION (MEASURABLE SETS)
Let X be any non-empty set. A σ-algebra† of subsets of X is a familyM of subsets
of X, with the properties:

À M is non-empty.

Á Closure under complement: If E ∈ M, then X \ E ∈ M.

Â Closure under countable union: If {En}∞
n=1 is a sequence of sets inM, then their

union
⋃∞

n=1 En is inM.

†Read as “sigma algebra”. The Greek letter σ in this ridiculous name stands for the German word
summe, meaning union. In this context it specifically refers to the countable union of sets, in contrast to
mere finite union.

5



2. Basic definitions: Measurable spaces 6

The pair (X,M) is called a measurable space, and the sets inM are called the
measurable sets.

2.1.2 REMARK (CLOSURE UNDER COUNTABLE INTERSECTIONS). The axioms always im-
ply that X, ∅ ∈ M. Also, by De Morgan’s laws,M is closed under countable inter-
sections as well as countable union.

2.1.3 EXAMPLE. Let X be any non-empty set. ThenM = {X, ∅} is the trivial σ-algebra.

2.1.4 EXAMPLE. Let X be any non-empty set. Then its power setM = 2X is a σ-algebra.

Needless to say, we cannot insist that M is closed under arbitrary unions or
intersections, as that would forceM = 2X ifM contains all the singleton sets. That
would be uninteresting. More importantly, we do not always wantM = 2X because
we may be unable to come up with sensible definitions of “area” for some very wild
sets A ∈ 2X.

On the other hand, we want closure under countable set operations, rather than
just finite ones, as we will want to be taking countable limits. Indeed, you may
recall that the class of Jordan-measurable sets (those that have an area definable by a
Riemann integral) is not closed under countable union, and that causes all sorts of
trouble when trying to prove limiting theorems for Riemann integrals.

To get non-trivial σ-algebras to work with we need the following very uncon-
structive(!) construction.

If we have a family of σ-algebras on X, then the intersection of all the σ-algebras
from this family is also a σ-algebra on X. If all of the σ-algebras from the family
contains some fixed G ⊆ 2X, then the intersection of all the σ-algebras from the
family, of course, is a σ-algebra containing G.

Now if we are given G, and we take all the σ-algebras on X that contain G, and
intersect all of them, we get the smallest σ-algebra that contains G.

2.1.5 DEFINITION (GENERATED σ-ALGEBRA)
For any given family of sets G ⊆ 2X, the σ-algebra generated by G is the the smallest
σ-algebra containing G; it is denoted by σ(G).

The following is an often-used σ-algebra.

2.1.6 DEFINITION (BOREL σ-ALGEBRA)
If X is a space equipped with topology T (X), the Borel σ-algebra is the σ-algebra
B(X) = σ(T (X)) generated by all open subsets of X.

When topological spaces are involved, we will always take the σ-algebra to be the Borel
σ-algebra unless stated otherwise.
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B(X), being generated by the open sets, then contains all open sets, all closed
sets, and countable unions and intersections of open sets and closed sets — and then
countable unions and intersections of those, and so on, moving deeper and deeper
into the hierarchy.

In general, there is no more explicit description of what sets are in B(X) or σ(G),
save for a formal construction using the principle of transfinite induction from set
theory. Fortunately, in analysis it is rarely necessary to know the set-theoretic de-
scription of σ(G): any sets that come up can be proven to be measurable by express-
ing them countable unions, intersections and complements of sets that we already
know are measurable. So the language of σ-algebras can be simply viewed as a
concise, abstract description of unendingly taking countable set operations.

The Borel σ-algebra is generally not all of 2X — this fact is shown in Theorem
5.5.1, which you can read now if it interests you.

2.2 Positive measures
2.2.1 DEFINITION (POSITIVE MEASURE)

Let (X,M) be a measurable space. (ThusM is a σ-algebra as in Definition 2.1.1.) A
(positive) measure on this space is a non-negative set function µ : M → [0, ∞] such
that

À µ(∅) = 0.

Á Countable additivity: For any sequence of mutually disjoint sets En ∈ M,

µ

( ∞⋃
n=1

En

)
=

∞

∑
n=1

µ(En) .

The set (X,M, µ) will be called a measure space.

For convenience, we will often refer to measurable spaces and measure spaces
only by naming the domain; the σ-algebra and measure will be implicit, as in: “let
X be a measure space”, etc.

2.2.2 EXAMPLE (COUNTING MEASURE). Let X be an arbitrary set, andM be a σ-algebra
on X. Define µ : M→ [0, ∞] as

µ(A) =

{
the number of elements in A , if A is a finite set ,
∞ , if A is an infinite set .

This is called the counting measure.
We will be able to model the infinite series ∑∞

n=1 an in Lebesgue integration the-
ory by using X = N and the counting measure.
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-6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6

Figure 2.1: Schematic of the counting measure on the integers.

2.2.3 EXAMPLE (LEBESGUE MEASURE). X = Rn, andM = B(Rn). There is the Lebesgue
measure λ which assigns to the rectangle its usual n-dimensional volume:

λ
(
[a1, b1]× · · · × [an, bn]

)
= (b1 − a1) · · · (bn − an) .

This measure λ should also assign the correct volumes to the usual geometric
figures, as well as for all the other sets inM. Intuitively, defining the volume of the
rectangle only should suffice to uniquely determine the volume of the other sets,
as the volume of any other measurable set can be approximated by the volume of
many small rectangles. Indeed, we will later show this intuition to be true.

In fact, many theorems using Lebesgue measure and integrals with respect to
Lebesgue measure really depend only on the definition of the volume of the rectan-
gle. So for now we skip the fine details of properly showing the existence of Lebesgue
measure, coming back to it later.

2.2.4 EXAMPLE (DIRAC MEASURE). Fix x ∈ X, and setM = 2X. The Dirac measure or
point mass is the measure δx : M→ [0, ∞] with

δx(A) =

{
1 , x ∈ A ,
0 , x /∈ A .

The Dirac measure, considered by itself, appears to be trivial, but it appears as a
basic building block for other measures, as we will see later.

The name “Dirac” is attached to this measure as it is the realization in measure
theory of the (in)famous “Dirac delta function”. The layman’s definition of the Dirac
delta “function”, δx, states that it should satisfy, for all continuous functions f : R→
R, ∫ ∞

−∞
f (y) δx(y) dy = f (x) , x ∈ R .

Our measure δx will behave similarly: since the mass of the measure is concen-
trated at the point x, our eventual definition of the Lebesgue integral with respect to
the measure δx will satisfy:∫ ∞

−∞
f (y) dδx(y) = f (x) , x ∈ R .

Before we begin the prove more theorems, we remark that we will be manipulat-
ing quantities from the extended real number system (see section A.1) that includes ∞.
We should warn here that the additive cancellation rule will not work with ∞. The
danger should be sufficiently illustrated in the proofs of the following theorems.
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2.2.5 THEOREM (ADDITIVITY AND MONOTONICITY OF POSITIVE MEASURES)
Let µ be a measure on a measurable space (X,M). It has the following basic prop-
erties:

À It is finitely additive.

Á Monotonicity: If A, B ∈ M, and A ⊆ B, then µ(A) ≤ µ(B).

Â If A, B ∈ M, with A ⊆ B and µ(A) < ∞, then µ(B \ A) = µ(B)− µ(A).

Proof Property À is obvious. For property Á, applying property À to the disjoint sets
B \ A and A, we have

µ(B) = µ((B \ A) ∪ A) = µ(B \ A) + µ(A) ;

and µ(B \ A) ≥ 0. For property Â, subtract µ(A) from both sides.
Note that B \ A = B ∩ (X \ A) belongs toM by the properties of a σ-algebra. �

The preceding theorem, as well as the next ones, are quite intuitive and you
should have no trouble remembering them.

A
B \ A

B
E1

E2 E3E4
E14 . . .

Figure 2.2: The sets and measures involved in Theorem 2.2.5 and Theorem 2.2.7.

2.2.6 THEOREM (COUNTABLE SUBADDITIVITY)
For any sequence of sets E1, E2, . . . ∈ M, not necessarily disjoint,

µ

( ∞⋃
n=1

En

)
≤

∞

∑
n=1

µ(En) .

Proof The union
⋃

n En can be “disjointified” — that is, rewritten as a disjoint union
— so that we can apply ordinary countable additivity:

µ

( ∞⋃
n=1

En

)
= µ

( ∞⋃
n=1

En \ (E1 ∪ E2 ∪ · · · ∪ En−1)
)

=
∞

∑
n=1

µ
(
En \ (E1 ∪ E2 ∪ · · · ∪ En−1)

) ≤ ∞

∑
n=1

µ(En) .

The final inequality comes from the monotonicity property of Theorem 2.2.5. �
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2.2.7 THEOREM (CONTINUITY FROM BELOW AND ABOVE)
Let (X,M, µ) be a measure space.

À Continuity from below: Let E1 ⊆ E2 ⊆ E3 ⊆ · · · be subsets inM with union E.
The sets En are said to increase to E, and henceforth we will abbreviate this by
En ↗ E. Then

µ(E) = µ

( ∞⋃
n=0

En

)
= lim

n→∞
µ(En) .

Á Continuity from above: Let E1 ⊇ E2 ⊇ E3 ⊇ · · · be subsets inM with intersec-
tion E. The sets En are said to be decrease to E, and this will be abbreviated
En ↘ E. Assuming that at least one Ek has µ(Ek) < ∞, then

µ(E) = µ

( ∞⋂
n=1

En

)
= lim

n→∞
µ(En) .

Proof Since the sets Ek are increasing, they can be written as the disjoint unions:

Ek = E1 ∪ (E2 \ E1) ∪ (E3 \ E2) ∪ · · · ∪ (Ek \ Ek−1) , E0 = ∅ ,
E = E1 ∪ (E2 \ E1) ∪ (E3 \ E2) ∪ · · · ,

so that

µ(E) =
∞

∑
k=1

µ(Ek \ Ek−1) = lim
n→∞

n

∑
k=1

µ(Ek \ Ek−1) = lim
n→∞

µ(En) .

This proves property À.
For property Á, we may as well assume µ(E1) < ∞, for if µ(Ek) < ∞, we can

just discard the sets before Ek, and this affects nothing. Observe that (E1 \ En) ↗
(E1 \ E), and µ(E) ≤ µ(En) ≤ µ(E1) < ∞. so we may apply property À:

µ(E1)− µ(E) = µ(E1 \ E) = lim
n→∞

µ(E1 \ En) = µ(E1)− lim
n→∞

µ(En) ,

and cancel the term µ(E1) on both sides. �

Though the general notation employed in measure theory unifies the cases for
both finite and infinite measures, it is hardly surprising, as with Theorem 2.2.7, that
some results only apply for the finite case. We emphasize this with a definition:

2.2.8 DEFINITION (FINITE MEASURE)
+ A measurable set E has (µ-)finite measure if µ(E) < ∞.

+ A measure space (X, µ) has finite measure if µ(X) < ∞.
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2.3 Measurable functions

To do integration theory, we of course need functions to integrate. Given that not
all sets may be measurable, it should be expected that perhaps not all functions
can be integrated either. The following definition identifies those functions that are
candidates for integration.

2.3.1 DEFINITION (MEASURABLE FUNCTIONS)
Let (X,A) and (Y,B) be measurable spaces (Definition 2.1.1). A map f : X → Y is
measurable if

+ for all B ∈ B, the set f−1(B) = { f ∈ B} is in A.

This definition is not difficult to motivate in at least purely formal terms. It is
completely analogous to the definition of continuity between topological spaces. For
measure theory, the relevant structures on the domain and range space, are given by
σ-algebras in place of topologies of open sets.

2.3.2 EXAMPLE (CONSTANT FUNCTIONS). A constant map f is always measurable, for
f−1(B) is either ∅ or X.

2.3.3 THEOREM (COMPOSITION OF MEASURABLE FUNCTIONS)
The composition of two measurable functions is measurable.

Proof This is immediate from the definition. �

Recall that σ-algebra are often defined by generating them from certain ele-
mentary sets (Definition 2.1.5). In the course of proving that a particular function
f : X → Y is measurable, it seems plausible that it should be atomatically measur-
able as soon as we verify that the pre-images f−1(B) are measurable for only ele-
mentary sets B. In fact, since the generated σ-algebra is defined non-constructively,
we can think of no other way of establishing the measurability of f−1(B) directly.

The next theorem, Theorem 2.3.4, confirms this fact. Its technique of proof ap-
pears magical at first, but really it is forced upon us from the unconstructive defini-
tion of the generated σ-algebra.

2.3.4 THEOREM (MEASURABILITY FROM GENERATED σ-ALGEBRA)
Let (X,A) and (Y,B) be measurable spaces, and suppose G generates the σ-algebra
B. A function f : X → Y is measurable if and only if

+ for every set V in the generator set G, its pre-image f−1(V) is in A.

Proof The “only if” part is just the definition of measurability.
For the “if” direction, define

H = {V ∈ B : f−1(V) ∈ A} .
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It is easily verified that H is a σ-algebra, since the operation of taking the inverse
image commutes with the set operations of union, intersection and complement.

By hypothesis, G ⊆ H. Therefore, σ(G) ⊆ σ(H). But B = σ(G) by the definition
of G, and H = σ(H) since H is a σ-algebra. Unraveling the notation, this means
f−1(V) ∈ A for every V ∈ B. �

2.3.5 COROLLARY (CONTINUITY IMPLIES MEASURABILITY)
All continuous functions between topological spaces are measurable, with respect
to the Borel σ-algebras (Definition 2.1.6) for the domain and range.

2.3.6 REMARK (BOREL MEASURABILITY). If f : X → Y is a function between topologi-
cal spaces each equipped with their Borel σ-algebras, some authors emphasize by
saying that f is Borel-measurable rather than just measurable.

If X = Rn, there is a weaker notion of measurability, involving a σ-algebra L
on Rn that is strictly larger than B(Rn); a function f : Rn → Y is called Lebesgue-
measurable if it is measurable with respect to L and B(Y).

We mostly will not care for this technical distinction (which will be later ex-
plained in section 5.6), for B(Rn) already contains the measurable sets we need in
practice. We only raise this issue now to stave off confusion when consulting other
texts.

We are mainly interested in integrating functions taking values in R or R. We
can specialize the criterion for measurability for this case.

2.3.7 THEOREM (MEASURABILITY OF REAL-VALUED FUNCTIONS)
Let (X,M) be a measurable space. A map f : X → R is measurable if and only if

+ for all c ∈ R, the set { f > c} = f−1((c, +∞]) is inM.

Proof Let G be the set of all open intervals (a, b), for a, b ∈ R, along with {−∞}, {+∞}.
LetH be the set of all intervals (c, +∞] for c ∈ R.

EvidentlyH generates G:

(a, b) = [−∞, b) ∩ (a, +∞] ,

[−∞, b) =
∞⋃

n=1

[−∞, b− 1
n ] =

∞⋃
n=1

R \ (b− 1
n , +∞] .

{+∞} =
∞⋂

n=1

(n, +∞] .

{−∞} = R \
∞⋃

n=1

(−n, +∞] .

Because every open set in R can be written as a countable union of bounded open
intervals (a, b), the family G generates the open sets, and hence the Borel σ-algebra
on R. ThenH must generate the Borel σ-algebra too.

Applying Theorem 2.3.4 to the generatorH gives the result. �
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The “countable union with 1/n” trick used in the proof (which is really the
Archimedean property of real numbers) is widely applicable.

2.3.8 REMARK. We can replace (c, +∞], in the statement of the theorem, by [c, +∞], [−∞, c],
etc. and there is no essential difference.

The next theorem is especially useful; it addresses one of the problems that we
encounter with Riemann integrals already discussed in chapter 1.

2.3.9 THEOREM (MEASURABILITY OF LIMIT FUNCTIONS)
Let f1, f2, . . . be a sequence of measurable R-valued functions. Then the functions

sup
n

fn, inf
n

fn, lim sup
n

fn, lim inf
n

fn

(the limits are taken pointwise) are all measurable.

Proof If g(x) = supn fn(x), then {g > c} =
⋃

n{ fn > c}, and we apply Theorem
2.3.7. Likewise, if g(x) = infn fn(x), then {g < c} =

⋃
n{ fn < c}.

The other two limit functions can be expressed as in terms of supremums and
infimums over a countable set, so they are measurable also. �

2.3.10 THEOREM (MEASURABILITY OF POSITIVE AND NEGATIVE PART)
If f : X → R is a measurable function, then so are:

f +(x) = max{+ f (x), 0} (positive part of f )
f−(x) = max{− f (x), 0} (negative part of f ) .

Conversely, if f + and f− are both measurable, then so is f .

Proof Since {− f < c} = { f > −c}, we see that − f is measurable. Theorem 2.3.9
and Example 2.3.2 then show that f + and f− are both measurable.

For the converse, we express f as the difference f + − f−; the measurability of f
then follows from the first half of Theorem 2.3.11 below. �

We will need to do arithmetic in integration theory, so naturally we must have
theorems concerning the measurability of arithmetic operations.

2.3.11 THEOREM (MEASURABILITY OF SUM AND PRODUCT)
If f , g : X → R are measurable functions, then so are the functions f + g, f g, and
f /g (provided g 6= 0).
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Proof Consider the countable union

{ f + g < c} =
⋃

r∈Q

{ f < c− r} ∩ {g < r} .

The set equality is justified as follows: Clearly f (x) < c− r and g(x) < r together
imply f (x) + g(x) < c. Conversely, if we set g(x) = t, then f (x) < c− t, and we can
increase t slightly to a rational number r such that f (x) < c− r, and g(x) < t < r.

The sets { f < c− r} and {g < r} are measurable, so { f + g < c} is too, and by
Theorem 2.3.7 the function f + g is measurable. Similarly, f − g is measurable.

To prove measurability of the product f g, we first decompose it into positive and
negative parts as described by Theorem 2.3.10:

f g = ( f + − f−)(g+ − g−) = f +g+ − f +g− − f−g+ + f−g− .

Thus we see that it is enough to prove that f g is measurable when f and g are
assumed to be both non-negative. Then just as with the sum, this expression as a
countable union:

{ f g < c} =
⋃

r∈Q

{ f < c/r} ∩ {g < r} ,

shows that f g is measurable.
Finally, for the function 1/g with g > 0,

{1/g < c} =

{
{g > 1/c} , c > 0 ,
∅ , c ≤ 0 .

For g that may take negative values, decompose 1/g as 1/g+ − 1/g−. �

2.3.12 REMARK (RE-DEFINING MEASURABLE FUNCTIONS AT SINGULAR POINTS). You prob-
ably have already noticed there may be difficulty in defining what the arithmetic
operations mean when the operands are infinite, or when dividing by zero. The
usual way to deal with these problems is to simply redefine the functions whenever
they are infinite to be some fixed value. In particular, if the function g is obtained by
changing the original measurable function f on a measurable set A to be a constant c,
we have:

{g ∈ B} =
({g ∈ B} ∩ A

) ∪ ({g ∈ B} ∩ Ac) ,

{g ∈ B} ∩ A =

{
A , c ∈ B
∅ , c /∈ B ,

{g ∈ B} ∩ Ac = { f ∈ B} ∩ Ac ,

so the resultant function g is also measurable. Very conveniently, any sets like A =
{ f = +∞} or { f = 0} are automatically measurable. Thus the gaps in Theorem
2.3.11 with respect to infinite values can be repaired with this device.
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2.4 Definition of the integral

The idea behind Riemann integration is to try to measure the sums of area of the
rectangles “below a graph” of a function and then take some sort of limit. The
Lebesgue integral uses a similar approach: we perform integration on the “simple”
functions first:

2.4.1 DEFINITION (SIMPLE FUNCTION)
A function is simple if its range is a finite set.

2.4.2 DEFINITION (INDICATOR FUNCTION)
For any set S ⊆ X, its indicator function† is a function I(S) : X → {0, 1} defined by

I(S)(x) = I(x ∈ S) =

{
1 , x ∈ S ,
0 , x /∈ S .

The indicator function will play an integral role in our definition of the integral.

2.4.3 REMARK (MEASURABILITY OF INDICATOR). The indicator function I(S) is a mea-
surable function (Definition 2.3.1) if and only if the set S is measurable (Definition
2.1.1).

For brevity, we will tacitly assume simple functions and indicator functions to
be measurable unless otherwise stated.

2.4.4 REMARK (REPRESENTATION OF SIMPLE FUNCTIONS). An R-valued simple function
ϕ always has a representation as a finite sum:

ϕ =
n

∑
k=1

ak I(Ek) ,

where ak are the distinct values of ϕ, and Ek = ϕ−1({ak}).
Conversely, any expression of the above form, where the values ak need not be

distinct, and the sets Ek are not necessarily ϕ−1({ak}), also defines a simple function.
For the purposes of integration, however, we will require that Ek be measurable, and
that they partition X.

† The indicator function is often called the characteristic function (of a set) and denoted by χS rather
than I(S). I am not a fan of this notation, as the glyph χ looks too much like x, and the subscript
becomes a little annoying to read if the set S is written out as a formula like { f ∈ E}. However, the
notation adopted here is perfectly standard in probability theory. Also, the word “characteristic” is
ambiguous and conflicts with the terminology for a different concept from probability theory.
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2.4.5 DEFINITION (INTEGRAL OF SIMPLE FUNCTION)
Let (X, µ) be a measure space. The Lebesgue integral, over X, of a measurable
simple function ϕ : X → [0, ∞] is defined as∫

X
ϕ dµ =

∫
X

n

∑
k=1

ak I(Ek) dµ =
n

∑
k=1

ak µ(Ek) .

We restrict ϕ to be non-negative, to avoid having to deal with ∞−∞ on the right-
hand side.

Needless to say, the quantity on the right represents the sum of the areas below
the graph of ϕ.

2.4.6 REMARK (MULTIPLICATION OF ZERO AND INFINITY). There is a convention, con-
cerning ∞ for the extended real number system, that will be in force whenever we
deal with integrals.

0 · ±∞ = 0 always.

In particular, this rule affects the interpretation of the right-hand side in the defining
equation of Definition 2.4.5. It is not hard to divine the reason behind this rule:

When integrating functions, we often want to ignore “isolated” singularities, for
example, the one at the origin for the integral

∫ 1
0 dx/

√
x. The point 0 is supposed

to have Lebesgue-“measure zero”, so even though the integrand is ∞ there, the area
contribution at that point should still be 0 = 0 ·∞. Hence the rule.

Similarly, if c is a constant then we should have
∫

A c dx = c · λ(A), where λ(A)
is the Lebesgue measure of the set A. Obviously if c = 0 then the integral is always
zero, even if λ(A) = ∞, e.g. for A = R. To make this work we must have again
0 = 0 ·∞.

2.4.7 REMARK (INTEGRAL IS WELL-DEFINED). It had better be the case that the value of
the integral does not depend on the particular representation of ϕ. If ϕ = ∑i aiI(Ai) =
∑j bjI(Bj), where Ai and Bj partition X (so Ai ∩ Bj partition X), then

∑
i

ai µ(Ai) = ∑
j

∑
i

ai µ(Ai ∩ Bj) = ∑
j

∑
i

bj µ(Ai ∩ Bj) = ∑
j

bj µ(Bj) .

The second equality follows because the value of ϕ is ai = bj on Ai ∩ Bj, so ai = bj
whenever Ai ∩ Bj 6= ∅. So fortunately the integral is well-defined.

Using the same algebraic manipulations just now, you can prove the monotonicity
of the integral for simple functions: if ϕ ≤ ψ, then

∫
X ϕ dµ ≤ ∫X ψ dµ.

Our definition of the integral for simple functions also satisfies the linearity
property expected for any kind of integral:

2.4.8 LEMMA (LINEARITY OF INTEGRAL FOR SIMPLE FUNCTIONS)
The Lebesgue integral for simple functions is linear.
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Proof That
∫

X cϕ dµ = c
∫

X ϕ dµ, for any constant c ≥ 0, is clear. And if ϕ =
∑i ai I(Ai), ψ = ∑j bj I(Bj), we have∫

X
ϕ dµ +

∫
X

ψ dµ = ∑
i

aiµ(Ai) + ∑
j

bjµ(Bj)

= ∑
i

∑
j

aiµ(Ai ∩ Bj) + ∑
j

∑
i

bjµ(Bj ∩ Ai)

= ∑
i

∑
j
(ai + bj) µ(Ai ∩ Bj)

=
∫

X
(ϕ + ψ) dµ . �

Next, we integrate non-simple measurable functions like this:

2.4.9 DEFINITION (INTEGRAL OF NON-NEGATIVE FUNCTION)
Let f : X → [0, ∞] be measurable and non-negative. Define the Lebesgue integral of
f over X as ∫

X
f dµ = sup

{∫
X

ϕ dµ
∣∣∣ ϕ simple, 0 ≤ ϕ ≤ f

}
.

(
∫

X ϕ dµ is defined in Definition 2.4.5.)

Intuitively, the simple functions ϕ in the definition are supposed to approximate
f , as close as we like from below, and the integral of f is the limit of the integrals
of these approximations. Theorem 2.4.10 below provides a particular kind of such
approximations.

2.4.10 THEOREM (APPROXIMATION BY SIMPLE FUNCTIONS)
Let f : X → [0, ∞] be measurable. There are simple functions ϕn : X → [0, ∞) such
that ϕn ↗ f , meaning ϕn are increasing pointwise and converging pointwise to f .
Moreover, on any set where f is bounded, the ϕn converge to f uniformly.

Proof For any 0 ≤ y ≤ n, let Ψn(y) be y rounded down to the nearest multiple of
2−n, and whenever y > n, truncate Ψn(y) to n. Explicitly,

Ψn =
n2n−1

∑
k=0

k
2n I(

[
k

2n ,
k + 1

2n

)
) + n I([n, ∞]) .

Set ϕn to be the measurable simple functions Ψn ◦ f . Then 0 ≤ f (x)− ϕn(x) < 2−n

whenever n > f (x), and ϕn(x) = n whenever f (x) = ∞. This implies the desired
convergence properties, and clearly ϕn are increasing pointwise. �

And in case you were worrying about whether this new definition of the integral
agrees with the old one in the case of the non-negative simple functions, well, it
does. Use monotonicity to prove this.
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Figure 2.3: In Theorem 2.4.10, we first partition the range [0, ∞]. Taking f−1 induces a
partition on the domain of f , and a subordinate simple function. The approximation to f
by that simple function improves as we partition the range more finely. In effect, Lebesgue
integration is done by partitioning the range and taking limits.

∫
X

f− dµ

∫
X

f+ dµ

Figure 2.4:
∫

X f dµ is the “algebraic area” of the regions bounded by f lying above
and below zero.

2.4.11 DEFINITION (INTEGRAL OF MEASURABLE FUNCTION)
For a measurable function f : X → R, not necessarily non-negative, its Lebesgue inte-
gral is defined in terms of the integrals of its positive and negative part:∫

X
f dµ =

∫
X

f + dµ−
∫

X
f− dµ ,

provided that the two integrals on the right (from Definition 2.4.9), are not both ∞.

2.4.12 REMARK (NOTATIONS FOR THE INTEGRAL). If we want to display the argument of
the integrand function, alternate notations for the integral include:∫

x∈X
f (x) dµ ,

∫
X

f (x) dµ(x) ,
∫

X
f (x) µ(dx) .
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For brevity we will even omit certain parts of the integral that are implied by context:∫
f ,

∫
X

f ,
∫

f dµ ,
∫

x∈X
f (x) ,

although these abbreviations are not to be recommended for general usage.

2.4.13 EXAMPLE (INTEGRAL OVER LEBESGUE MEASURE). If λ is the Lebesgue measure (Ex-
ample 2.2.3) on Rn, the abstract integral

∫
X f dλ that we have just developed special-

izes to an extension of the Riemann integral over Rn. This integral†, as you might
expect, is often denoted just as:∫

X
f (x) dx (X ⊆ Rn) or

∫ b

a
f (x) dx (−∞ ≤ a ≤ b ≤ ∞) ,

without mention of the measure λ.

2.4.14 REMARK (INTEGRATING OVER SUBSETS). Often we will want to integrate over sub-
sets of X also. This can be accomplished in two ways. Let A be a measurable subset
of X. Either we simply consider integrating over the measure space restricted to
subsets of A, or we define ∫

A
f dµ =

∫
X

f I(A) dµ .

If ϕ is non-negative simple, a simple working out of the two definitions of the inte-
gral over A shows that they are equivalent. To prove this for the case of arbitrary
measurable functions, we will need the tools of the next section.

2.4.15 THEOREM (MONOTONICITY OF INTEGRAL)
For a measurable function f : X → R on a measure space X, whose integral is de-
fined:

À Comparison: If g : X → R is another measurable function whose integral is
defined, with f ≤ g, then

∫
X f ≤ ∫X g.

Á Monotonicity: If f ≥ 0, and A ⊆ B ⊆ X are measurable sets, then
∫

A f ≤ ∫B f .

Â Generalized triangle inequality:
∣∣∣∫X f

∣∣∣ ≤ ∫X| f |.
(“Generalized triangle inequality” alludes to the integral being a generalized
form of summation.)

† There is no consensus in the literature on whether the term “Lebesgue integral” means the abstract
integral developed in this section, or does it only mean the integral applied to Lebesgue measure on
Rn. In this book, we will take the former interpretation of the term, and explicitly state a function is to
be integrated with Lebesgue measure if the situation is ambiguous.
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Proof Assume first that 0 ≤ f ≤ g. Because we have the inclusion

{ϕ simple, 0 ≤ ϕ ≤ f } ⊆ {ϕ simple, 0 ≤ ϕ ≤ g} ,

from the definition of the integral of a non-negative function in terms of the supre-
mum, we must have

∫
X f ≤ ∫X g.

Now assume only f ≤ g. Then f + ≤ g+ and f− ≥ g−, so:∫
X

f =
∫

X
f + −

∫
X

f− ≤
∫

X
g+ −

∫
X

g− =
∫

X
g .

This proves property À.
Property Á follows by applying property À to the two functions f I(A) ≤ f I(B).
Property Â follows by observing that −| f | ≤ f ≤ | f |, and from property À

again:

−
∫

X
| f | =

∫
X
−| f | ≤

∫
X

f ≤
∫

X
| f | .

�

Naturally, the integral for non-simple functions is linear, but we still have a small
hurdle to pass before we are in the position to prove that fact. For now, we make
one more convenient definition related to integrals that will be used throughout this
book.

2.4.16 DEFINITION (MEASURE ZERO)
+ A (µ-)measurable set is said to have (µ-)measure zero if µ(E) = 0.

+ A particular property is said to hold almost everywhere if the set of points
for which the property fails to hold is a set of measure zero.

For example: “a function vanishes almost everywhere”; “ f = g almost every-
where”.

Typical examples of a measure-zero set are the singleton points in Rn, and lines and
curves in Rn, n ≥ 2. By countable additivity, any countable set in Rn has measure
zero also.

Clearly, if you integrate anything on a set of measure zero, you get zero. Chang-
ing a function on a set of measure zero does not affect the value of its integral.

Assuming that linearity of the integral has been proved, we can demonstrate the
following intuitive result.

2.4.17 THEOREM (VANISHING INTEGRALS)
A non-negative measurable function f : X → [0, ∞] vanishes almost everywhere if
and only if

∫
X f = 0.

Proof Let A = { f = 0}, and µ(Ac) = 0. Then∫
X

f =
∫

X
f · (I(A) + I(Ac)) =

∫
X

f I(A) +
∫

X
f I(Ac) =

∫
A

f +
∫

Ac
f = 0 + 0 .
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Conversely, if
∫

X f = 0, consider { f > 0} =
⋃

n{ f > 1
n}. We have

µ{ f > 1
n} =

∫
{ f > 1

n }
1 = n

∫
{ f > 1

n }
1
n
≤ n

∫
{ f > 1

n }
f ≤ n

∫
X

f = 0

for all n. Hence µ{ f > 0} = 0. �

2.5 Exercises

2.1 (Inclusion-exclusion formula) Let (X, µ) be a finite measure space. For any finite
number of measurable sets E1, . . . , En ⊆ X,

µ

( n⋃
k=1

Ek

)
= ∑

∅ 6=S⊆{1,...,n}
(−1)|S|−1 µ

(⋂
k∈S

Ek

)
.

For example, for the case n = 2:

µ(A ∪ B) = µ(A) + µ(B)− µ(A ∩ B) .

(No deep measure theory is necessary for this problem; it is just a combinatorial
argument.)

2.2 (Limit inferior and superior) For any sequence of subsets E1, E2, . . . of X, its limit
superior and limit inferior are defined by:

lim sup
n→∞

En =
∞⋂

n=1

⋃
k≥n

Ek , lim inf
n→∞

En =
∞⋃

n=1

⋂
k≥n

Ek .

The interpretation is that lim supn En contains those elements of X that occur “in-
finitely often” in the sets En, and lim infn En contains those elements that occur in all
except finitely many of the sets En.

Let (X, µ) be a finite measure space, and En be measurable. Then the limit supe-
rior and limit inferior satisfy these inequalities:

µ(lim inf
n

En) ≤ lim inf
n

µ(En) ≤ lim sup
n

µ(En) ≤ µ(lim sup
n

En) .

2.3 (Relation between limit superior of sets and functions) Let fn be any sequence of
R-valued functions. Then for any constant c ∈ R,{

lim sup
n

fn > c
}
⊆ lim sup

n
{ fn > c} ⊆

{
lim sup

n
fn ≥ c

}
.

(The inequality in the middle need not be strict, but the inequalities on the left and
right cannot be improved.)
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These relations can be useful for showing pointwise convergence of functions,
particularly in probability theory. If we want to show that fn converges to a function
f almost everywhere, it is equivalent to show that the set

lim sup
n
{| fn − f | > ε}

has measure zero for every ε > 0.

2.4 (Continuity of measures) If a finitely additive “measure” function is continuous
from below (see Theorem 2.2.7), then it is countably additive. Analogously, pro-
vided the space has finite measure, then continuity from above implies countable
additivity.

2.5 (Measurability of monotone functions) Show that a monotonically increasing or de-
creasing function f : R→ R is measurable.

A curious observation: the limiting sums for the Lebesgue integral of an increas-
ing function f : [a, b] → R are actually Riemann sums. Not coincidentally, such f is
always Riemann-integrable.

2.6 (Measurability of limit domain) Let fn : X → R be a sequence of measurable func-
tions on a measurable space X. The set of x ∈ X where lim

n→∞
fn(x) exists is measur-

able.

2.7 (Measurability of limit function) If fn : X → R is a sequence of measurable func-
tions, then their pointwise limit lim

n→∞
fn is also measurable. (If the limit does not

exist at a point, define it to be some arbitrary constant.)

2.8 (Measurability of pasted continuous functions) Let (x, y) 7→ θ(x, y) be the map-
ping from a point in R2 to its polar angle 0 ≤ θ < 2π. Also set θ(0, 0) = 0. Defined
in this way, θ is not continuous on the non-negative x-axis; nevertheless, it is still a
measurable mapping.

More generally, of course, any function manufactured from pasting together con-
tinuous functions on measurable sets is going to be measurable.

2.9 (Measurability of uncountable supremum) If { fα} is an uncountable family of R-
valued measurable functions, supα fα is not necessarily measurable.

However, if fα are continuous, then uncountability poses no obstacle: supα fα is
measurable.

2.10 (Symmetric set difference) If E and F are any subsets within some universe, define
their symmetric set difference as E∆F = (Ec ∩ F) ∪ (E ∩ Fc).

If E and F are measurable for some measure µ, and µ(E∆F) = 0, then µ(E) =
µ(F).
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E ∩ F c

Ec ∩ F
E

F

Figure 2.5: Symmetric set difference

2.11 (Metric space on measurable sets) Let (X,M, µ) be a measure space. For any E, F ∈
M, define d(E, F) = µ(E∆F). Then d makes M into a metric space, provided we
“mod out”M by the equivalence relation d(E, F) = 0.

2.12 (Grid approximation to Lebesgue measure) Let β > 1 be some scaling factor. For
any positive integer k, we can draw a rectangular grid G(β−k) on the space Rn con-
sisting of cubes all with side lengths β−k (Like on a piece of graph paper; we may
have β = 10, for example.)

If E is any subset of Rn, its inner approximation of mesh size β−k consists of those
cubes in G(β−k) that are contained in E. Similarly, E has an outer approximation of
mesh size β−k consisting of those cubes in G(β−k) that meet E.

À For any open set U ⊆ Rn, the inner grid approximations to U increase to U (as
k→ ∞).

Á The volume (Lebesgue measure) of U is the limit of the volumes of the inner
approximations to U.

Â Similarly, for any compact set K ⊆ Rn, the outer grid approximations to K
decrease to K.

Ã The volume of K is the limit of the volumes of its outer approximations.

Ä There are measurable sets E whose volumes are not equal to the limiting vol-
umes of their inner or outer approximations by rectangular grids.

For example, if the topological boundary of E does not have measure zero, the
limiting volumes of the inner approximations must disagree with the limit-
ing volumes of the outer approximations. Note that this is precisely the case
when E is not Jordan-measurable (I(E) is not Riemann-integrable; see also the
results of section 7.1).

2.13 (Definition of integral by uniform approximations) Figure 2.3 strongly suggests that
the integrals of the approximating functions ϕn from Theorem 2.4.10 should ap-
proach the integral of f .
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This intuition can be turned around to give an alternate definition of
∫

f for
bounded functions f on a finite measure space. If ϕn are simple functions approaching
f uniformly, define

∫
f = lim

n→∞

∫
ϕn.

Show that this is well-defined: two uniformly convergent sequences approach-
ing the same function have the same limiting integrals. Also prove that linearity and
monotonicity holds for this definition of the integral.

2.14 (Bounded convergence theorem) Let fn : X → R be measurable functions converg-
ing to f pointwise everywhere. Assume that fn are uniformly bounded, and X is a
finite measure space. Show that lim

n→∞

∫
X| fn − f | = 0.

This is a special case of the dominated convergence theorem we will present in the
next chapter. However, solving this special case provides good practice in deploying
measure-theoretic arguments. Hint: Exercise 2.2 and Exercise 2.3.



Chapter 3

Useful results on integration

Here are collected useful results and applications of the Lebesgue integral. Though
we will not yet be able to construct all of the foundations for integration theory, by
the end of this chapter, you can still begin fruitfully using Lebesgue’s integral in
place of Riemann’s.

3.1 Convergence theorems

This section presents the amazing three convergence theorems available for the
Lebesgue integral that make it so much better than the Riemann integral. Behold!

Both the statement and proof of the first theorem below can be motivated from
Definition 2.4.9 of

∫
X f dµ for non-negative functions f . That definition says

∫
X f dµ

is the least upper bound of all
∫

X ϕ dµ for non-negative simple functions ϕ lying
below f . It seems plausible that ϕ here can in fact be replaced by any non-negative
measurable function lying below f .

3.1.1 THEOREM (MONOTONE CONVERGENCE THEOREM)
Let (X, µ) be a measure space. Let fn : X → [0, ∞] be non-negative measurable func-
tions increasing pointwise to f . Then∫

X
f dµ =

∫
X

(
lim
n→∞

fn

)
dµ = lim

n→∞

∫
X

fn dµ .

Proof f is measurable because it is an increasing limit of measurable functions. Since
fn is an increasing sequence of functions bounded by f , their integrals is an increas-
ing sequence of numbers bounded by

∫
X f dµ; thus the following limit exists:

lim
n→∞

∫
X

fn dµ ≤
∫

X
f dµ .

Next we show the inequality in the other direction.
Take any 0 < t < 1. Given a fixed simple function 0 ≤ ϕ ≤ f , let

An = { fn ≥ tϕ} .

25
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The sets An are obviously increasing.
We show that X =

⋃
n An. If for a particular x ∈ X, we have ϕ(x) = 0, then

x ∈ An for all n. Otherwise, ϕ(x) > 0, so f (x) ≥ ϕ(x) > tϕ(x), and there is going
to be some n for which fn(x) ≥ tϕ(x), i.e. x ∈ An.

For all µ-measurable sets E ⊆ X, define

ν(E) =
∫

E
tϕ dµ = t

m

∑
k=1

ykµ(E ∩ Ek) , ϕ =
m

∑
k=1

ykI(Ek) , yk ≥ 0 .

It is not hard to see that ν is a measure. Then∫
X

tϕ dµ = ν(X) = ν
( ∞⋃

n=1

An

)
= lim

n→∞
ν(An) = lim

n→∞

∫
An

tϕ dµ

≤ lim
n→∞

∫
An

fn dµ , since on An we have tϕ ≤ fn

≤ lim
n→∞

∫
X

fn dµ .

t
∫

X
ϕ dµ ≤ lim

n→∞

∫
X

fn dµ , and take the limit t↗ 1.∫
X

ϕ dµ ≤ lim
n→∞

∫
X

fn dµ , and take supremum over all 0 ≤ ϕ ≤ f . �

Using the monotone convergence theorem, we can finally prove the linearity of
the Lebesgue integral for non-simple functions, which must have been nagging you
for a while:

3.1.2 THEOREM (LINEARITY OF INTEGRAL)
If f , g : X → R are measurable functions whose integrals exist, then

À
∫

( f + g) =
∫

f +
∫

g (provided that the right-hand side is not ∞−∞).

Á
∫

c f = c
∫

f for any constant c ∈ R.

Proof Assume first that f , g ≥ 0. By the approximation theorem (Theorem 2.4.10), we
can find non-negative simple functions ϕn ↗ f , and ψn ↗ g. Then ϕn + ψn ↗ f + g,
and so ∫

f + g = lim
n→∞

∫
ϕn + ψn = lim

n→∞

∫
ϕn +

∫
ψn =

∫
f +

∫
g .

(The second equality follows because we already know the integral is linear for sim-
ple functions (Lemma 2.4.8). For the first and third equality we apply the monotone
convergence theorem.)

For f , g not necessarily ≥ 0, set h+ − h− = h = f + g = ( f + − f−) + (g+ − g−).
This can be rearranged to avoid the negative signs: h+ + f− + g− = h− + f + + g+.
(The last equation is valid even if some of the terms are infinite.) Then∫

h+ +
∫

f− +
∫

g− =
∫

h− +
∫

f + +
∫

g+ .
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Regrouping the terms gives
∫

h =
∫

f +
∫

g, proving part À. (This can be done
without fear of infinities since h± ≤ f± + g±, so if

∫
f± and

∫
g± are both finite,

then so is
∫

h±.)
Part Á can be proven similarly. For the case f , c ≥ 0, we use approximation by

simple functions. For f not necessarily ≥ 0, but still c ≥ 0,∫
c f =

∫
(c f )+ −

∫
(c f )− =

∫
c f + −

∫
c f− = c

∫
f + − c

∫
f− = c

∫
f .

If c ≤ 0, write c f = (−c)(− f ) to reduce to the preceding case. �

There are many more applications like this of the monotone convergence the-
orem. We postpone those for now, in favor of quickly proving the remaining two
convergence theorems.

3.1.3 THEOREM (FATOU’S LEMMA)
Let fn : X → [0, ∞] be measurable. Then∫

lim inf
n→∞

fn ≤ lim inf
n→∞

∫
fn .

Proof Set gn = infk≥n fk, so that gn ≤ fn, and gn ↗ lim infn fn. Then∫
lim inf

n
fn =

∫
lim

n
gn = lim

n

∫
gn = lim inf

n

∫
gn ≤ lim inf

n

∫
fn

by the monotone convergence theorem. �

The following definition formulates a crucial hypothesis of the famous dominated
convergence theorem, probably the most used of the three convergence theorems in
applications.

3.1.4 DEFINITION (LEBESGUE INTEGRABILITY)
A function f : X → R is called integrable if it is measurable and

∫
X| f | < ∞.

Observe that
| f | = f + + f− , | f | ≥ f± ,

so f is integrable if and only if f + and f− are both integrable. It is also helpful to
know, that

∫ | f | < ∞ must imply | f | < ∞ almost everywhere.

3.1.5 THEOREM (LEBESGUE’S DOMINATED CONVERGENCE THEOREM)
Let (X, µ) be a measure space. Let fn : X → R be a sequence of measurable functions
converging pointwise to f . Moreover, suppose that there is an integrable function g
such that | fn| ≤ g, for all n. Then fn and f are also integrable, and

lim
n→∞

∫
X
| fn − f | dµ = 0 .

(The function g is said to dominate over fn.)
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f1

1

1

f2

1
2

2

f3

1
3

3

f4

1
4

4

0

Figure 3.1: A mnemonic for remembering which way the inequality goes in Fatou’s lemma.
Consider these “witches’ hat” functions fn. As n→ ∞, the area under the hats stays constant
even though fn(x)→ 0 for each x ∈ [0, 1].

Proof Obviously fn and f are integrable. Also, 2g− | fn − f | is measurable and non-
negative. By Fatou’s lemma (Theorem 3.1.3),∫

lim inf
n

(2g− | fn − f |) ≤ lim inf
n

∫
(2g− | fn − f |) .

Since fn converges to f , the left-hand quantity is just
∫

2g. The right-hand quantity
is:

lim inf
n

(∫
2g−

∫
| fn − f |

)
=
∫

2g + lim inf
n

(
−
∫
| fn − f |

)
=
∫

2g− lim sup
n

∫
| fn − f | .

Since
∫

2g is finite, it may be cancelled from both sides. Then we obtain

lim sup
n

∫
| fn − f | ≤ 0 , that is, lim

n→∞

∫
| fn − f | = 0 .

�

3.1.6 REMARK (ALMOST EVERYWHERE). We only need to require that fn converge to f
pointwise almost everywhere, or that | fn| is bounded above by g almost every-
where. (However, if fn only converges to f almost everywhere, then the theorem
would not automatically say that f is measurable.)
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3.1.7 REMARK (INTERCHANGE OF LIMIT AND INTEGRAL). By the generalized triangle in-
equality (Theorem 2.4.15), we can also conclude that

lim
n→∞

∫
X

fn dµ =
∫

X
f dµ ,

which is usually how the dominated convergence theorem is applied.

The dominated convergence theorem can be vaguely described by saying, given
that the graphs of the functions fn are enveloped by±g, if fn → f , then the integrals
of fn are forced to converge to that of f because the area under the graphs of fn have
no opportunity to “escape” out to infinity.

For the functions in fig. 3.1, the functions fn do have an opportunity to escape to
infinity, and indeed the limit of integrals does not equal the integral of the limit.

The dominated convergence theorem is a manifestation of the seemingly ubiq-
uitous principle in analysis, that if we can show something is bounded or absolutely
convergent, then we get nice regularity properties.

3.1.8 REMARK (CONTINUOUS LIMITS FOR DOMINATED CONVERGENCE). The theorem also
holds for continuous limits of functions, not just countable limits. That is, if we have
a continuous sequence of functions, say ft, 0 ≤ t < 1, we can also say

lim
t→1

∫
X
| ft − f | dµ = 0 ;

for given any sequence {an} convergent to 1, we can apply the theorem to fan . Since
this can be done for any sequence convergent to 1, the continuous limit is estab-
lished.

In the next sections, we will take the convergence theorems obtained here to
prove useful results.

3.2 Interchange of summation and integral

3.2.1 THEOREM (BEPPO-LEVI)
Let fn : X → [0, ∞] be non-negative measurable functions. Then

∫ ∞

∑
n=1

fn =
∞

∑
n=1

∫
fn .

Proof Let gN = ∑N
n=1 fn, and g = ∑∞

n=1 fn. By monotone convergence:

∫
g =

∫
lim

N→∞
gN = lim

N→∞

∫
gN = lim

N→∞

N

∑
n=1

∫
fn =

∞

∑
n=1

∫
fn .

�



3. Useful results on integration: Mass density functions 30

3.2.2 THEOREM (GENERALIZATION OF BEPPO-LEVI)
Let fn : X → R be measurable functions, with†

∫
∑n| fn| = ∑n

∫ | fn| being finite.
Then

∞

∑
n=1

∫
fn =

∫ ∞

∑
n=1

fn .

Proof Let gN = ∑N
n=1 fn and h = ∑∞

n=1| fn|. Then |gN | ≤ |h|. Since
∫ |h| < ∞ by

hypothesis, |h| < ∞ almost everywhere, so gN is (absolutely) convergent almost
everywhere. By the dominated convergence theorem,

∞

∑
n=1

∫
fn = lim

N→∞

N

∑
n=1

∫
fn = lim

N→∞

∫
gN =

∫
lim sup

N→∞
gN =

∫ ∞

∑
n=1

fn .
�

3.2.3 EXAMPLE (DOUBLY-INDEXED SUMS). Here is a perhaps unexpected application. Sup-
pose we have a countable set of real numbers an,m, for n, m ∈N. Let µ be the count-
ing measure (Example 2.2.2) on N. Then∫

m∈N
an,m dµ =

∞

∑
m=1

an,m .

Moreover, Theorem 3.2.2 says that we can sum either along n first or m first and get
the same results,

∞

∑
n=1

∞

∑
m=1

an,m =
∞

∑
m=1

∞

∑
n=1

an,m ,

as long as the double sum is absolutely convergent. (Or the numbers amn are all non-
negative, so the order of summation should not possibly matter.) Of course, this fact
can also be proven in an entirely elementary way.

3.3 Mass density functions

3.3.1 THEOREM (MEASURES GENERATED BY MASS DENSITIES)
Let g : X → [0, ∞] be measurable in the measure space (X,A, µ). Let

ν(E) =
∫

E
g dµ , E ∈ A .

Then ν is a measure on (X,A), and for any measurable f : X → R,∫
X

f dν =
∫

X
f g dµ ,

† The first Beppo-Levi theorem, Theorem 3.2.1, shows that always
∫

∑∞
n=1| fn| = ∑∞

n=1
∫ | fn|,

whether it is finite or not.
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often written as† dν = g dµ.

Proof We prove ν is a measure. ν(∅) = 0 is trivial. For countable additivity, let {En}
be measurable with disjoint union E, so that I(E) = ∑∞

n=1 I(En), and

ν(E) =
∫

E
g dµ =

∫
X

g I(E) dµ

=
∫

X

∞

∑
n=1

g I(En) dµ =
∞

∑
n=1

∫
X

g I(En) dµ =
∞

∑
n=1

ν(En) .

Next, if f = I(E) for some E ∈ A, then∫
X

f dν =
∫

X
I(E) dν = ν(E) =

∫
X

I(E)g dµ =
∫

X
f g dµ .

By linearity, we see that
∫

f dν =
∫

f g dµ whenever f is non-negative simple. For
general non-negative f , we use a sequence of simple approximations ϕn ↗ f , so
ϕng↗ f g. Then by monotone convergence,∫

X
f dν = lim

n→∞

∫
X

ϕn dν = lim
n→∞

∫
X

ϕng dµ =
∫

X
lim
n→∞

ϕng dµ =
∫

X
f g dµ .

Finally, for f not necessarily non-negative, we apply the above to its positive and
negative parts, then subtract them. �

3.3.2 REMARK (PROOFS BY APPROXIMATION WITH SIMPLE FUNCTIONS). The proof of The-
orem 3.3.1 illustrates the standard procedure to proving certain facts about integrals.
We first reduce to the case of simple functions and non-negative functions, and then
take limits with either the monotone convergence theorem or dominated conver-
gence theorem.

This standard procedure will be used over and over again. (It will get quite
monotonous if we had to write it in detail every time we use it, so we will abbreviate
the process if the circumstances permit.)

Also, we should note that if f is only measurable but not integrable, then the
integrals of f + or f− might be infinite. If both are infinite, the integral of f is not
defined, although the equation of the theorem might still be interpreted as saying
that the left-hand and right-hand sides are undefined at the same time. For this
reason, and for the sake of the clarity of our exposition, we will not bother to modify
the hypotheses of the theorem to state that f must be integrable.

Problem cases like this also occur for some of the other theorems we present, and
there I will also not make too much of a fuss about these problems, trusting that you
understand what happens when certain integrals are undefined.

† The function g is sometimes called the density function of ν with respect to µ; we will have much
more to say about density functions in a later section.
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3.4 Change of variables

3.4.1 THEOREM (CHANGE OF VARIABLES)
Let X, Y be measure spaces, and g : X → Y, f : Y → R be measurable. Then∫

X
( f ◦ g) dµ =

∫
Y

f dν , ν(B) = µ(g−1(B)) for measurable B ⊆ Y.

ν is called a transport measure or pullback measure.

Proof First suppose f = I(B). Let A = g−1(B) ⊆ X. Then f ◦ g = I(A), and we have∫
Y

f dν =
∫

Y
I(B) dν = ν(B) = µ(g−1(B)) = µ(A) =

∫
X
( f ◦ g) dµ .

Since both sides of this equation are linear in f , the equation holds whenever f is
simple. Applying the “standard procedure” mentioned above (Remark 3.3.2), the
equation is then proved for all measurable f . �

3.4.2 REMARK (CHANGE OF VARIABLES IN REVERSE). The change of variables theorem
can also be applied “in reverse”. Suppose we want to compute

∫
Y f dν, where ν is

already given to us. Further assume that g is bijective and its inverse is measurable.
Then we can define µ(A) = ν(g(A)), and it follows that

∫
Y f dν =

∫
X( f ◦ g) dµ.

3.4.3 REMARK (ALTERNATE NOTATION FOR CHANGE OF VARIABLES). This alternate no-
tation may help in remembering the change-of-variables formula. To transform∫

Y
f (y) ν(dy)↔

∫
X

f (g(x)) µ(dx) ,

substitute
y = g(x) , ν(dy) = µ(dx) , dx = g−1(dy) .

If g−1 is also a measurable function, then we may also write dy = g(dx).

Our theorem, especially when stated in the reverse form, is clearly related to the
usual “change of variables” theorem in calculus. If g : X → Y is a bijection between
open subsets of Rn, and both it and its inverse are continuously differentiable (that
is, g is a diffeomorphism), and λ is the Lebesgue measure in Rn, then, as we shall
prove rigorously in Lemma 7.2.1,

λ(g(A)) =
∫

A
|det Dg| dλ . `

Then we can obtain:
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small rectangle Q
x approximation to image g(Q)

y

differentiable mapping g

Figure 3.2: Explanation of the change-of-variables formula dy = |det Dg(x)| dx. When an
image g(Q) is approximated by the linear application y + Dg(x)(Q− x), its volume is scaled
by a factor of |det Dg(x)|.

3.4.4 THEOREM (DIFFERENTIAL CHANGE OF VARIABLES IN Rn)
Let g : X → Y be a diffeomorphism of open sets in Rn. If A ⊆ X is measurable, and
f : Y → R is measurable, then∫

g(A)
f (y) dy =

∫
A

f (g(x)) g(dx) =
∫

A
f (g(x)) · |det Dg(x)| dx .

(Substitute y = g(x) and dy = g(dx) = |det Dg(x)| dx.)

Proof Take ν = λ and µ = ν ◦ g as our abstract change of variables, appealing to
Theorem 3.4.1 and Remark 3.4.2. Then∫

Y
f dλ =

∫
X
( f ◦ g) d(λ ◦ g) .

We have d(λ ◦ g) = |det Dg| dλ from equation `, so by Theorem 3.3.1,∫
X
( f ◦ g) d(λ ◦ g) =

∫
X
( f ◦ g) · |det Dg| dλ .

If we replace f by f I(g(A)), then∫
g(A)

f dλ =
∫

A
( f ◦ g) · |det Dg| dλ .

�
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3.5 Integrals with parameter

The next theorem is the Lebesgue version of a well-known result about the Riemann
integral.

3.5.1 THEOREM (FIRST FUNDAMENTAL THEOREM OF CALCULUS)
Let X ⊆ R be an interval, and f : X → R be integrable with Lebesgue measure on
R. Then the function

F(x) =
∫ x

a
f (t) dt

is continuous. Furthermore, if f is continuous at x, then F′(x) = f (x).

Proof To prove continuity, we compute:

F(x + h)− F(x) =
∫ x+h

x
f (t) dt =

∫
X

f (t) · I(t ∈ [x, x + h]) dt .

In this proof, the indicator I(t ∈ [x, x + h]) should be interpreted as−I(t ∈ [x + h, x])
whenever h < 0, so that

∫ x+h
x = − ∫ x

x+h as in calculus.
Since | f · I([x, x + h])| ≤ | f |, we can apply the dominated convergence theorem,

together with Remark 3.1.8, to conclude:

lim
h→0

F(x + h)− F(x) = lim
h→0

∫
X

f (t) · I(t ∈ [x, x + h]) dt

=
∫

X
lim
h→0

f (t) · I(t ∈ [x, x + h]) dt

=
∫

X
f (t) · I(t ∈ {x}) dt = 0 .

The proof of differentiability is the same as for the Riemann integral:∣∣∣∣F(x + h)− F(x)
h

− f (x)
∣∣∣∣ =

∣∣∣∣∣
∫ x+h

x ( f (t)− f (x)) dt
h

∣∣∣∣∣
≤
∫

[x,x+h]| f (t)− f (x)| dt

|h|

≤ supt∈[x,x+h]| f (t)− f (x)| · |h|
|h| ,

which goes to zero as h does. �

You may be wondering, as a calculus student does, whether the hypothesis of
continuity of the integrand may be weakened in Theorem 3.5.1. The answer is affir-
mative; in chapter 10 we shall prove a great generalization due to Lebesgue himself.
For now, this theorem is all we need to compute integrals over the real line analyti-
cally in the usual way.

The following theorems are often not found in calculus texts even though they
are quite important for applied calculations.
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3.5.2 THEOREM (CONTINUOUS DEPENDENCE ON INTEGRAL PARAMETER)
Let X be a measure space, T be any metric space (e.g. Rn), and f : X× T → R, with
f (·, t) being measurable for each t ∈ T. Then

F(t) =
∫

x∈X
f (x, t)

is continuous at t0 ∈ T, provided the following conditions are met:

À For each x ∈ X, f (x, ·) is continuous at t0.

Á There is an integrable function g such that | f (x, t)| ≤ g(x) for all t ∈ T.

Proof The hypotheses have been formulated so we can immediately apply domi-
nated convergence:

lim
t→t0

∫
x∈X

f (x, t) =
∫

x∈X
lim
t→t0

f (x, t) =
∫

x∈X
f (x, t0) .

�

3.5.3 THEOREM (DIFFERENTIATION UNDER THE INTEGRAL SIGN)
Let X be a measure space, T be an open interval of Rn, and f : X × T → R, with
f (·, t) being measurable for each t ∈ T. Then

F(t) =
∫

x∈X
f (x, t) ,

is differentiable with the derivative:

F′(t) =
d
dt

∫
x∈X

f (x, t) =
∫

x∈X

∂

∂t
f (x, t) ,

provided the following conditions are satisfied:

À For each x ∈ X, ∂
∂t f (x, t) exists for all t ∈ T.

Á There is an integrable function g such that
∣∣∣ ∂

∂t f (x, t)
∣∣∣ ≤ g(x) for all t ∈ T.

Proof This theorem is often proven by using iterated integrals and switching the or-
der of integration, but that method is theoretically troublesome because it requires
more stringent hypotheses. It is easier, and better, to prove it directly from the defi-
nition of the derivative.

lim
h→0

F(t + h)− F(t)
h

= lim
h→0

∫
x∈X

f (x, t + h)− f (x, t)
h

=
∫

x∈X
lim
h→0

f (x, t + h)− f (x, t)
h

=
∫

x∈X

∂

∂t
f (x, t) .

Note that
∣∣∣ f (x,t+h)− f (x,t)

h

∣∣∣ can be bounded by g(x) using the mean value theorem of
calculus. �
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3.5.4 REMARK. It is easy to see that we may generalize Theorem 3.5.3 to T being any open
set in Rn, taking partial derivatives.

3.5.5 EXAMPLE. The inveterate Γ function, defined on the positive reals by

Γ(x) =
∫ ∞

0
e−ttx−1 dt ,

is continuous, and differentiable with the obvious formula for the derivative.

3.6 Exercises

3.1 (Hypotheses for monotone convergence) Can we weaken the requirement, in the
monotone convergence theorem and Fatou’s lemma, that fn ≥ 0?

If fn are measurable functions decreasing to f , is it true that limn
∫

fn =
∫

f ? If
not, what additional hypotheses are needed?

3.2 (Increasing classes of measures) Let µn be an increasing sequence of measures be
defined on a common measurable space. (That is, µn(E) ≤ µn+1(E) for all measur-
able E.) Then µ = sup

n
µn is also a measure.

3.3 (Jensen’s inequality) Let (X, µ) be a finite measure space, and g : I → R be a (non-
strict) convex function on an open interval I ⊆ R. If f : X → I is any integrable
function, then

g
( 1

µ(X)

∫
X

f dµ
)
≤ 1

µ(X)

∫
X
(g ◦ f ) dµ .

The inequality is reversed if g is concave instead of convex.

3.4 (Limit of averages of real function) If f : [0, ∞)→ R be a measurable function, and
lim
x→∞

f (x) = a, then

lim
x→∞

1
x

∫ x

0
f (t) dt = a .

3.5 (Continuous functions equal to zero a.e.) If f : Rn → R is continuous and equal to
zero almost everywhere, then f is in fact equal to zero everywhere.

3.6 (Weak convergence to Dirac delta) Let g : Rn → [0, ∞] be an integrable function
with

∫
Rn g(x) dx = 1. Show that for any bounded function f : Rn → R continu-

ous at 0,

lim
ε↘0

∫
Rn

1
εn f (x) g

( x
ε

)
dx = f (0) =

∫
Rn

f (x) dδ(x) .

Thus, as ε ↘ 0, the measures νε(A) =
∫

A ε−ng(x/ε) dx converge, in some sense, to
δ, the Dirac measure around 0 described in Example 2.2.4.
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3.7 (Dominated convergence with lower and upper bounds) Given the intuitive inter-
pretation of the dominated convergence theorem given in the text, it seems plausible
that the following is a valid generalization. Prove it.

Let Ln ≤ fn ≤ Un be three sequences of R-valued measurable functions that
converge to L, f , U respectively. Assume L and U are integrable, and

∫
Ln →

∫
L,∫

Un →
∫

U. Then f is integrable and
∫

fn →
∫

f .

3.8 (Weak second fundamental theorem of calculus) Prove the following.
Suppose F : [a, b] → R is differentiable with bounded derivative. Then F′ is inte-

grable on [a, b] and ∫ b

a
F′(x) dx = F(b)− F(a) .

This result manages to avoid requiring F′ to be continuous.
However, the hypothesis that F′ be bounded cannot be completely removed,

though it can be weakened. There are functions F that oscillate so quickly up and
down that |F′| is not integrable. The typical counterexample found in calculus text-
books is the function illustrated in Figure ??.



Chapter 4

Some commonly encountered
spaces

4.1 Space of integrable functions

This section is a short introduction to spaces of integrable functions, and the prop-
erties of convergence in these spaces.

4.1.1 DEFINITION (Lp SPACE)
Let (X, µ) be a measure space, and let 1 ≤ p < ∞. The space Lp(µ) consists of all
measurable functions f : X → R such that∫

X
| f |p dµ < ∞ .

For such f , define

‖ f ‖p =
(∫

X
| f |p dµ

)1/p
.

(If f : X → R is measurable but | f |p is not integrable, set ‖ f ‖p = ∞.)

As suggested by the notation, ‖·‖p should be a norm on the vector space Lp.
In the formal sense it is not, because ‖ f ‖p = 0 only implies that f is zero almost
everywhere, not that it is zero identically. This minor annoyance can be resolved
logically by redefining Lp as the equivalence classes of functions that equal each other
except on sets of measure zero. Though most people still prefer to think of Lp as
consisting of actual functions.

Only the verification of the triangle inequality for ‖·‖p presents any difficulties
— they will be solved by the theorems below.

4.1.2 DEFINITION (CONJUGATE EXPONENTS)
Two numbers 1 < p, q < ∞ are called conjugate exponents if 1

p + 1
q = 1.

38
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4.1.3 THEOREM (HÖLDER’S INEQUALITY)
For R-valued measurable functions f and g, and conjugate exponents p and q:∣∣∣∫ f g

∣∣∣ ≤ ∫ | f ||g| ≤ ‖ f ‖p‖g‖q .

Proof The first inequality is trivial. For the second inequality, since it only involves
absolute values of functions, for the rest of the proof we may assume that f , g are
non-negative.

If ‖ f ‖p = 0, then | f |p = 0 almost everywhere, and so f = 0 and f g = 0 almost
everywhere too. Thus the inequality is valid in this case. Likewise, when ‖g‖q = 0.

If ‖ f ‖p or ‖g‖q is infinite, the inequality is trivial.
So we now assume these two quantities are both finite and non-zero. Define

F = f /‖ f ‖p, G = g/‖g‖q, so that ‖F‖p = ‖G‖q = 1. We must then show that∫
FG ≤ 1.

To do this, we employ the fact that the natural logarithm function is concave:

1
p

log s +
1
q

log t ≤ log
(

s
p

+
t
q

)
, 0 ≤ s, t ≤ ∞ ;

or,
s1/p t1/q ≤ s

p + t
q .

Substitute s = Fp, t = Gq, and integrate both sides:∫
FG ≤ 1

p

∫
Fp +

1
q

∫
Gq =

1
p
‖F‖p

p +
1
q
‖G‖q

q =
1
p

+
1
q

= 1.
�

The special case p = q = 2 of Hölder’s inequality is the ubiquitous Cauchy-
Schwarz inequality.

4.1.4 THEOREM (MINKOWSKI’S INEQUALITY)
For R-valued measurable functions f and g, and conjugate exponents p and q:

‖ f + g‖p ≤ ‖ f ‖p + ‖g‖p .

Proof The inequality is trivial when p = 1 or when ‖ f + g‖p = 0. Also, since
‖ f + g‖p ≤ ‖| f | + |g|‖p, it again suffices to consider only the case when f , g are
non-negative.

Since the function t 7→ tp, for t ≥ 0 and p > 1, is convex, we have(
f + g

2

)p

≤ f p + gp

2
.

This inequality shows that if ‖ f + g‖p is infinite, then one of ‖ f ‖p or ‖g‖p must also
be infinite, so Minkowski’s inequality holds true in that case.
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We may now assume ‖ f + g‖p is finite. We write:∫
( f + g)p =

∫
f ( f + g)p−1 +

∫
g( f + g)p−1 .

By Hölder’s inequality, and noting that (p− 1)q = p for conjugate exponents,∫
f ( f + g)p−1 ≤ ‖ f ‖p

∥∥∥( f + g)p−1
∥∥∥

q
= ‖ f ‖p

(∫
| f + g|p

)1/q
= ‖ f ‖p‖ f + g‖p/q

p .

A similar inequality holds for
∫

g( f + g)p−1. Putting these together:

‖ f + g‖p
p ≤ (‖ f ‖p + ‖g‖p)‖ f + g‖p/q

p .

Dividing by ‖ f + g‖p/q
p yields the result. �

4.1.5 REMARK (MINKOWSKI’S INEQUALITY FOR INFINITE SUMS). Minkowski’s inequality
also holds for infinitely many summands:∥∥∥ ∞

∑
n=1
| fn|
∥∥∥

p
≤

∞

∑
n=1
‖ fn‖p ,

and is extrapolated from the case of finite sums by taking limits.

Among the Lp spaces, the ones that prove most useful are undoubtedly L1 and
L2. The former obviously because there are no messy exponents floating about;
the latter because it can be made into a real or complex Hilbert space by the inner
product:

〈 f , g〉 =
∫

X
f g dµ .

A simple relation amongst the Lp spaces is given by the following.

4.1.6 THEOREM

Let (X, µ) have finite measure. Then Lp ⊆ Lr whenever 1 ≤ r < p < ∞. Moreover,
the inclusion map from Lp to Lr is continuous.

Proof For f ∈ Lp, Hölder’s inequality with conjugate exponents p
r and s = p

p−r states:

‖ f ‖r
r =

∫
| f |r ≤

(∫
| f |r· p

r

)r/p(∫
1s
)1/s

= ‖ f ‖r
p µ(X)1/s ,

and so
‖ f ‖r ≤ ‖ f ‖p µ(X)1/rs = ‖ f ‖p µ(X)

1
r− 1

p < ∞ .

To show continuity of the inclusion, replace f with f − g where ‖ f − g‖p < ε. �
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4.1.7 EXAMPLE.
∫ 1

0 x− 1
2 dx = 2 < ∞, so automatically

∫ 1
0 x− 1

4 dx < ∞. On the other hand,
the condition that µ(X) < ∞ is indeed necessary:

∫ ∞
1 x−2 dx < ∞, but

∫ ∞
1 x−1 dx =

∞.

4.1.8 THEOREM (DOMINATED CONVERGENCE IN Lp)
Let fn : X → R be measurable functions converging (almost everywhere) pointwise
to f , and | fn| ≤ g for some g ∈ Lp, 1 ≤ p < ∞. Then f , fn ∈ Lp, and fn converges to
f in the Lp norm, meaning:

lim
n→∞

(∫
| fn − f |p

)1/p
= lim

n→∞
‖ fn − f ‖p = 0.

Proof | fn − f |p converges to 0 and | fn − f |p ≤ (2g)p ∈ L1. Apply the usual domi-
nated convergence theorem on these functions. �

In analysis, it is important to know that the spaces of functions we are working
are complete; Lp is no exception. (Contrast with the Riemann integral.)

4.1.9 THEOREM

Lp, for 1 ≤ p < ∞, is a complete normed vector space, that is, a Banach space.

Proof It suffices to show that every absolutely convergent series in Lp is convergent.
Let fn ∈ Lp be a sequence such that ∑∞

n=1‖ fn‖p < ∞. By Minkowski’s inequality
for infinite sums (Remark 4.1.5), ‖∑∞

n=1| fn|‖p < ∞. Then g = ∑∞
n=1 fn converges

absolutely almost everywhere, and

∥∥∥ N

∑
n=1

fn − g
∥∥∥

p
=
∥∥∥ ∞

∑
n=N+1

fn

∥∥∥
p
≤

∞

∑
n=N+1

‖ fn‖p → 0 as N → ∞,

meaning that ∑∞
n=1 fn converges in Lp norm to g. �

For completeness (pun intended), we can also define a space called “L∞”:

4.1.10 DEFINITION

Let X be a measure space, and f : X → R be measurable. A number M ∈ [0, ∞]
is an almost-everywhere upper bound for | f | if | f | ≤ M almost everywhere. The
infimum of all almost-everywhere upper bounds for | f | is the essential supremum,
denoted by ‖ f ‖∞ or esssup| f |.

4.1.11 DEFINITION

L∞ is the set of all measurable functions f with ‖ f ‖∞ < ∞. Its norm is given by
‖ f ‖∞.
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“q = ∞” is considered a conjugate exponent to p = 1, and it is trivial to extend
Hölder’s inequality to apply to the exponents p = 1, q = ∞. In some respects, L∞

behaves like the other Lp spaces, and at other times it does not; a few pertinent
results are presented in the exercises.

We wrap up our brief tour of Lp spaces with a discussion of a remarkable prop-
erty. For any f ∈ Lp, let us take some simple approximations ϕn → f such that |ϕ|
is dominated by | f | (Theorem 2.4.10). Then ϕn converge to f in Lp (Theorem 4.1.8),
and we have proved:

4.1.12 THEOREM

Suppose we have f ∈ Lp(X, µ), 1 ≤ p < ∞. For any ε > 0, there exist simple
functions ϕ : X → R such that

‖ϕ− f ‖p =
(∫

X
|ϕ− f |p dµ

)1/p
< ε .

This may be summarized as: the simple functions are dense in Lp (in the topological
sense).

In this spruced up formulation, we can imagine other generalizations. For ex-
ample, if X = Rn and µ = λ is Lebesgue measure, then we may venture a guess that
the continuous functions are dense in Lp(Rn, λ). In other words, R-valued functions
that are measurable with respect to the Borel σ-finite generated by the topology for
Rn can be approximated as well as we like by functions continuous with respect to
that topology.

We can even go farther, and inquire whether approximations by smooth func-
tions are good enough. And yes, this turns out to be true: the set C∞

0 of infinitely
differentiable functions on Rn with compact support1 is dense in Lp(Rn, λ).

At this time, we are hardly prepared to demonstrate these facts, but they are
useful in the same manner that many theorems for Lebesgue integrals are proven
by approximating with simple functions. Some practice will be given in the chapter
exercises.

4.2 Probability spaces

4.3 Exercises

4.1 The infimum of almost upper bounds in the definition of ‖ f ‖∞ is attained.

4.2 Fatou’s lemma holds for L∞: if fn ≥ 0, then ‖lim inf
n

fn‖∞ ≤ lim inf
n
‖ fn‖∞.

4.3 (Borel’s theorem) Let Xn be a sequence of independently identically-distributed
random variables with finite mean. Then Xn/n→ 0 almost surely.

1The support of a function ψ : X → R is the closure of the set {x ∈ X : ψ(x) 6= 0}. “ψ has compact
support” means that the support of ψ is compact.



Chapter 5

Construction of measures

We now come to actually construct Lebesgue measure, as promised.
The construction takes a while and gets somewhat technical, and is not made

much easier by making it less abstract. However, the pay-off is worth it, as at the
end we will be able to construct many other measures besides Lebesgue measure.

5.1 Outer measures

The idea is to extend an existing set function µ, that has been only partially defined,
to an “outer measure” µ∗.

The extension is remarkably simple and intuitive. It also “works” with pretty
much any non-negative function µ, provided that it satisfies the trivial conditions in
the following definition. Only later will we need to impose stronger conditions on
µ, such as additivity.

5.1.1 DEFINITION (INDUCED OUTER MEASURE)
Let A be any family of subsets of a space X, and µ : A → [0, ∞] be a non-negative
set function. Assume ∅ ∈ A and µ(∅) = 0.

The outer measure induced by µ is the function:

µ∗(E) = inf
{ ∞

∑
n=1

µ(An) | A1, A2, . . . ∈ A cover E
}

,

defined for all sets E ⊆ X.

As our first step, we show that µ∗ satisfies the following basic properties, which
we generalize into a definition for convenience.

5.1.2 DEFINITION (OUTER MEASURE)
A function θ : 2X → [0, ∞] is an outer measure if:

À θ(∅) = 0.

Á Monotonicity: θ(E) ≤ θ(F) when E ⊆ F ⊆ X.

43
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Â Countable subadditivity: If E1, E2, . . . ⊆ X, then θ(
⋃

n En) ≤ ∑n θ(En).

5.1.3 THEOREM (PROPERTIES OF INDUCED OUTER MEASURE)
The induced outer measure µ∗ is an outer measure satisfying µ∗(A) ≤ µ(A) for all
A ∈ A.

Proof Properties À and Á for an outer measure are obviously satisfied for µ∗. That
µ∗(A) ≤ µ(A) for A ∈ A is also obvious.

Property Â is proven by straightforward approximation arguments. Let ε > 0.
For each En, by the definition of µ∗, there are sets {An,m}m ⊆ A covering En, with

∑
m

µ(An,m) ≤ µ∗(En) +
ε

2n .

All of the sets An,m together cover
⋃

n En, so we have

µ∗(
⋃
n

En) ≤ ∑
n,m

µ(An,m) = ∑
n

∑
m

µ(An,m) ≤∑
n

µ∗(En) + ε .

Since ε > 0 is arbitrary, we have µ∗(
⋃

n En) ≤ ∑n µ∗(En). �

Our first goal is to look for situations where θ = µ∗ is countably additive, so that
it becomes a bona fide measure. We suspect that we may have to restrict the domain
of θ, and yet this domain has to be “large enough” and be a σ-algebra.

Fortunately, there is an abstract characterization of the “best” domain to take for
θ, due to Constantin Carathéodory (it is a decided improvement over Lebesgue’s
original):

5.1.4 DEFINITION (MEASURABLE SETS OF OUTER MEASURE)
Let θ : 2X → [0, ∞] be an outer measure. Then

M = {B ∈ 2X | θ(B ∩ E) + θ(Bc ∩ E) = θ(E) for all E ⊆ X}
is the family of measurable sets of the outer measure θ.

Applying subadditivity of θ, the following definition is equivalent:

M = {B ∈ 2X | θ(B ∩ E) + θ(Bc ∩ E) ≤ θ(E) for all E ⊆ X} .

The intuitive meaning of the set predicate is that the set B is “sharply sepa-
rated” from its complement. (Compare with the fact that a bounded set B is Jordan-
measurable (i.e. I(B) is Riemann-integrable) if and only if its topological boundary
has measure zero.)

The appellation “measurable set” is justified by the following result aboutM:

5.1.5 THEOREM (MEASURABLE SETS OF OUTER MEASURE FORM σ-ALGEBRA)
M is a σ-algebra.
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Proof It is immediate from the definition that M is closed under taking comple-
ments, and that ∅ ∈ M. We first showM is closed under finite intersection, and
hence under finite union. Let A, B ∈ M.

θ
(
(A ∩ B) ∩ E

)
+ θ
(
(A ∩ B)c ∩ E

)
= θ(A ∩ B ∩ E) + θ

(
(Ac ∩ B ∩ E) ∪ (A ∩ Bc ∩ E) ∪ (Ac ∩ Bc ∩ E)

)
≤ θ(A ∩ B ∩ E) + θ(Ac ∩ B ∩ E) + θ(A ∩ Bc ∩ E) + θ(Ac ∩ Bc ∩ E)
= θ(B ∩ E) + θ(Bc ∩ E) , by definition of A ∈ M
= θ(E) , by definition of B ∈ M .

Thus A ∩ B ∈ M.
We now have to show that if B1, B2, . . . ∈ M, then

⋃
n Bn ∈ M. We may

assume that Bn are disjoint, for otherwise we can disjointify — consider instead
B′n = Bn \ (B1 ∪ · · · ∪ Bn−1), which are all inM as just shown.

For notational convenience, let:

DN =
N⋃

n=1

Bn ∈ M , DN ↗ D∞ =
∞⋃

n=1

Bn .

We will need to know that:

θ

( N⋃
n=1

Bn ∩ E
)

=
N

∑
n=1

θ(Bn ∩ E) , for all E ⊆ X, and N = 1, 2, . . . . `

This is a straightforward induction. The base case N = 1 is trivial. For N > 1,

θ(DN ∩ E) = θ
(

DN−1 ∩ (DN ∩ E)
)
+ θ
(

Dc
N−1 ∩ (DN ∩ E)

)
= θ(DN−1 ∩ E) + θ(BN ∩ E)

=
N

∑
n=1

θ(Bn ∩ E) , from induction hypothesis.

Using equation `, we now have:

θ(E) = θ(DN ∩ E) + θ(Dc
N ∩ E)

=
N

∑
n=1

θ(Bn ∩ E) + θ(Dc
N ∩ E)

≥
N

∑
n=1

θ(Bn ∩ E) + θ(Dc
∞ ∩ E) , from monotonicity.

Taking N → ∞, in conjunction with countable subadditivity, we obtain:

θ(E) ≥
∞

∑
n=1

θ(Bn ∩ E) + θ(Dc
∞ ∩ E) ≥ θ(D∞ ∩ E) + θ(Dc

∞ ∩ E) .

But this implies D∞ =
⋃∞

n=1 Bn ∈ M. �
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5.1.6 THEOREM (COUNTABLE ADDITIVITY OF OUTER MEASURE)
θ is countably additive onM. That is, if B1, B2, . . . ∈ M are disjoint, then θ(

⋃
n Bn) =

∑n θ(Bn).

Proof The finite case θ(
⋃N

n=1 Bn) = ∑N
n=1 θ(Bn) has already been proven — just set

E = X in equation `.
By monotonicity, ∑N

n=1 θ(Bn) ≤ θ(
⋃∞

n=1 Bn). Taking N → ∞ gives ∑∞
n=1 θ(Bn) ≤

θ(
⋃∞

n=1 Bn). The inequality in the other direction is implied by subadditivity. �

5.1.7 REMARK. More generally, the argument above shows that if a set function is finitely
additive, is monotone, and is countably subadditive, then it is countably additive.
We will be using this again later.

We summarize our work in this section:

5.1.8 COROLLARY (CARATHÉODORY’S THEOREM)
If θ is an outer measure (Definition 5.1.2), then the restriction of θ to its measurable
setsM (Definition 5.1.4) yields a positive measure onM.

5.2 Defining a measure by extension

Let µ be a set function that we want to somehow extend to a measure. In the last
section, we have successfully extracted (Corollary 5.1.8), from the outer measure µ∗,
a genuine measure µ∗|M by restricting to a certain familyM.

However, we do not yet know the relation between the original function µ and
the new µ∗, nor do we know if the sets of interest actually do belong toM.

In order for µ∗ to be a sane extension of µ to M, we will need to impose the
following conditions, all of which are quite reasonable.

5.2.1 DEFINITION (PRE-MEASURE)
A pre-measure is a set function µ : A → [0, ∞] on a non-empty family A of subsets
of X, satisfying the following conditions.

À The collectionA should be closed under finite set operations. Any such collection
A is termed an algebra.

Á µ(∅) = 0.

Â We have finite additivity of µ on the algebra A: if B1, . . . , Bn ∈ A are disjoint,
then µ(

⋃n
i=1 Bi) = ∑n

i=1 µ(Bi).

It follows that µ is monotone and finitely subadditive.
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Ã Also, if B1, B2, . . . ∈ A are disjoint, and
⋃∞

i=1 Bi happens to be in A, then we
must have countable additivity of µ there: µ(

⋃∞
i=1 Bi) = ∑∞

i=1 µ(Bi).

(If µ were not countably additive on A, then it could not possibly be extended
to a proper measure.)

These conditions are exactly just what we need to make the extension work out:

5.2.2 THEOREM (CARATHÉODORY EXTENSION PROCESS)
Given a pre-measure µ : A → [0, ∞], set µ∗ to be its induced outer measure. Then
every set in A ∈ A is measurable for µ∗, with µ∗(A) = µ(A).

Proof Fix A ∈ A. For any E ⊆ X and ε > 0, by definition of µ∗ (Definition 5.1.1),
we can find B1, B2, . . . ∈ A covering E such that ∑n µ(Bn) ≤ µ∗(E) + ε. Using the
properties of induced outer measures (Theorem 5.1.3), we find

µ∗(A ∩ E) + µ∗(Ac ∩ E) ≤ µ∗
(

A ∩⋃
n

Bn

)
+ µ∗

(
Ac ∩⋃

n
Bn

)
≤∑

n
µ∗(A ∩ Bn) + ∑

n
µ∗(Ac ∩ Bn)

≤∑
n

µ(A ∩ Bn) + ∑
n

µ(Ac ∩ Bn)

= ∑
n

µ(Bn) , from finite additivity of µ,

≤ µ∗(E) + ε .

Taking ε↘ 0, we see that A is measurable for µ∗ (Definition 5.1.4).
Now we show µ∗(A) = µ(A). Consider any cover of A by B1, B2, . . . ∈ A. By

countable subadditivity and monotonicity of µ,

µ(A) = µ
(⋃

n
A ∩ Bn

)
≤∑

n
µ(A ∩ Bn) ≤∑

n
µ(Bn) .

This implies µ(A) ≤ µ∗(A); the other inequality µ(A) ≥ µ∗(A) is automatic. �

Thus µ∗|M is a measure extending µ onto the σ-algebra M of measurable sets
for µ∗. M must then also contain the σ-algebra σ(A) generated by A, althoughM
may be strictly larger than σ(A).

Our final results for this section concern the uniqueness of this extension.

5.2.3 THEOREM (UNIQUENESS OF EXTENSION FOR FINITE MEASURE)
Let µ be a pre-measure on an algebraA. Assume µ(X) < ∞. If ν is another measure
on σ(A), that agrees with µ∗ on A, then µ∗ and ν agree on σ(A) as well.

Proof Let B ∈ σ(A); it is measurable for µ∗ by Theorem 5.2.2.

µ∗(B) = inf
A1,A2,...∈A

B⊆⋃n An

∑
n

µ(An) = inf ∑
n

ν(An) ≥ inf ν
(⋃

n
An

)
≥ inf ν(B) .
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So µ∗(B) ≥ ν(B). Applying this inequality for B replaced by X \ B, we find

µ∗(X)− µ∗(B) = µ∗(X \ B) ≥ ν(X \ B) = ν(X)− ν(B) = µ∗(X)− ν(B) ,

so µ∗(B) ≤ ν(B) after cancellation. �

But the hypothesis that µ has finite measure seems troublesome; it does not hold
for Lebesgue measure (X = Rn), for instance. An easy fix that works well in practice
is:

5.2.4 DEFINITION (σ-FINITE MEASURES)
A measure space (X, µ) is σ-finite, if there are measurable sets X1, X2, . . . ⊆ X, such
that

⋃
n Xn = X and µ(Xn) < ∞ for all n.

Clearly, we may as well assume that the sets Xn are increasing in this definition.
If µ is only a pre-measure defined on an algebra, then the sets Xn are assumed to

be taken from that algebra.

5.2.5 EXAMPLE (LEBESGUE MEASURE IS σ-FINITE). Lebesgue measure is σ-finite. Take
Xn to be open balls with radius n, for instance.

The definition of σ-finiteness is made to facilitate taking limits based on results
in the finite case, as illustrated by the proof below.

5.2.6 THEOREM (UNIQUENESS OF EXTENSION FOR σ-FINITE MEASURE)
The conclusion of Theorem 5.2.3 also holds when (X, µ) is σ-finite.

Proof Let Xn ↗ X, µ(Xn) < ∞ as in the definition of σ-finiteness. For each B ∈ σ(A),
Theorem 5.2.3 says that µ∗(B ∩ Xn) = ν(B ∩ Xn). Taking the limit n → ∞ yields
µ∗(B) = ν(B). �

Finally, we can state the uniqueness result without referring to the induced outer
measure. (Exercise 5.16 gives an alternate proof without intermediating through
outer measures.)

5.2.7 COROLLARY (UNIQUENESS OF MEASURES)
If two measures µ and ν agree on an algebra A, and the measure space is σ-finite
(under µ or ν), then µ = ν on the generated σ-algebra σ(A).

5.3 Probability measure for infinite coin tosses

Now that we have Carathédory’s extension theorem in hand (Theorem 5.2.2), we
can begin constructing some measures. However, there is some grunt work to do
to verify that the hypotheses of Carathédory’s extension theorem are satisfied. In
particular, proving that a pre-measure µ is countably additive on its algebra is not a
mere triviality, as we will see.
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Though our goal remains to construct Lebesgue measure on Rn, in this section
we tackle a simpler problem of constructing the probability measure for infinite coin
tosses.

We want to construct a probability space (Ω,F , P), with random variables

Xn : Ω→ {0, 1} , for n = 1, 2, . . . ,

representing either heads or tails from a coin toss, such that each coin toss is fair and
independent from each other:

P(X1 = x1 , . . . , Xk = xk) = P(X1 = x1) · · ·P(Xk = xk) = 2−k , xn = 0 or 1 . `

To the non-probabilists amongst us, this may seem to be a uninteresting detour,
but in fact its solution can be used in turn to construct Lebesgue measure, and it
will involve a prototype of the argument we will use later to construct Lebesgue
measure more directly. (The impatient reader may skip directly to the next section.)

Definition of sample space. Let

Ω =
∞

∏
n=1
{0, 1} = {0, 1}N

be the countably infinite product of the two-point set {0, 1}. The random vari-
ables Xn are defined to be simply the coordinate functions on Ω (projections):
Xn(ω) = ωn.

Definition of algebra. A set (event) A ⊆ Ω to said to be a cylinder set if it is of the
form A = B× {0, 1}N where B ⊆ {0, 1}k for some k. In words, we are allowed
the stipulate the results of a finite number k of coin tosses, but the results of all
the tosses after the kth one remain unknown (they can be heads or tails).

The algebra A is defined to consist of all cylinder sets. It is elementary that A
is closed under finite union, intersection, and complement. For example, if A
is represented as B× {0, 1}N as above, then Ac = Bc × {0, 1}N.

Definition of pre-measure. Also, define P(A) to be the number of elements in B
divided by 2k, i.e. the probability of any ω ∈ A occurring as in equation `.
Elementary counting shows that P(A) is well-defined, and is finitely additive
on A.

Countable additivity of pre-measure. Now we come to the big question: is P count-
ably additive on A? It may come as a pleasant surprise, but in actuality there
are no genuine disjoint countable unions inA— all countable unions collapse
to finite unions, so countable additivity is automatic.

We use compactness. Begin by putting the discrete topology on {0, 1}. The
singleton points {0} and {1} are open.
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Observe that every cylinder set is some finite union of the intersections:

{X1 = x1} ∩ · · · ∩ {Xn = xn} , n = 1, 2, . . . .

which so happen to form the basis for the product topology on the sample space
Ω. Thus every cylinder set is open in the product topology. Since A is closed
under complements, every cylinder set is also closed.

The component spaces {0, 1} are compact as each has only four open sets in
total. By Tychonoff’s theorem, the sample space Ω under the product topology
is also compact.

If E =
⋃

n An ∈ A for A1, A2, . . . ∈ A, this means {An} forms an open cover
of E. The set E is compact because it is a closed set of Ω; hence there is a finite
sub-cover which gives the finite union.

Now all we have to do is apply Carathédory’s extension theorem, to obtain a
measure P that satisfies `, defined on some σ-algebra F .

Relation to Lebesgue measure. The coin-toss measure can be transported to
the Lebesgue measure on [0, 1]. There is the most obvious way of corresponding
sequences of binary digits ω to numbers:

Tω = 0.ω1ω2ω3 · · · =
∞

∑
n=1

Xn(ω)
2n .

This mapping T : Ω → [0, 1] can be shown to be measurable. Then for any Borel set
E ⊆ [0, 1], we can take its Lebesgue measure to be

λ(E) = P({ω ∈ Ω | Tω ∈ E}) = P(T−1(E)) .

That this is Lebesgue measure can be illustrated by example. If E = [ 1
8 , 3

4 ], then
those ω that correspond to elements of E begin with one of the following prefixes:

0. 001 ω4ω5ω6 · · ·
0. 010 ω4ω5ω6 · · ·
0. 011 ω4ω5ω6 · · ·
0. 100 ω4ω5ω6 · · ·
0. 101 ω4ω5ω6 · · ·

(The number 3
4 = 0.110 is included in this list because 0.101111 · · · = 0.110000 · · · .)

But the probability of these ω occurring is 5/23 = 5
8 = 3

4 − 1
8 = λ(E), just as we

expect.
The details of generalizing this example to all Borel sets E are left to you (Exercise

5.5).
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5.4 Lebesgue measure on Rn

In this section we construct the n-dimensional volume measure on Rn. As hinted be-
fore, the idea is to define volume for rectangles and then extend with Carathéodory’s
theorem (Theorem 5.2.2).

Our setting will be the collection R of rectangles I1 × · · · × In in Rn, where Ik is
any open, half-open or closed, bounded or unbounded, interval in R. The following
definition is merely an abstracted version of the formal facts we need about these
rectangles.

5.4.1 DEFINITION (SEMI-ALGEBRA)
Let X be any set. A semi-algebra is anyR ⊆ 2X with the following properties:

À The empty set is inR.

Á Closure under finite intersection: The intersection of any two sets inR is inR.

Â The complement of any set inR is expressible as a finite disjoint union of other
sets inR.

It is graphically evident that the collection of all rectangles is indeed a semi-
algebra. Translating this to an algebraic proof is easy:

5.4.2 THEOREM (SEMI-ALGEBRA OF RECTANGLES)
The set of rectangles form a semi-algebra.

Proof Property À for a semi-algebra is trivial. For property Á, observe:

A = I1 × · · · × In , B = J1 × · · · × Jn =⇒ A ∩ B = (I1 ∩ J1)× · · · × (In ∩ Jn) .

Property Â follows by induction on dimension, expressing

(A× B)c = (Ac × B) ∪ (A× Bc) ∪ (Ac × Bc)

as a finite disjoint union at each step. �

From a semi-algebra, we can automatically construct an algebra A:

5.4.3 THEOREM

The family A of all finite disjoint unions of elements of a semi-algebra R is an alge-
bra.

Proof We check the properties for an algebra. Let A, B ∈ A be finite disjoint unions
of Ri ∈ R and Sj ∈ R respectively.

À The empty set is trivially in A.

Á A ∩ B =
(⋃

i Ri
) ∩ (⋃j Sj

)
=
⋃

i,j Ri ∩ Sj, and the final union remains disjoint
— so A is closed under finite intersection.
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Â Ac =
(⋃

i Ri
)c =

⋂
i Rc

i , and each Rc
i is a finite disjoint union of rectangles by

definition of a semi-algebra. The outer finite intersection belongs to A by step
Á, so A is closed under taking complements.

Ã Closure under finite intersection and complement implies closure under finite
union. �

By the way, the σ-algebra generated byAwill contain the Borel σ-algebra: every
open set U ∈ Rn obviously can be written as a union of open rectangles, and in fact
a countable union of open rectangles. For, given an arbitrary collection of rectangles
covering U ⊆ Rn, there always exists a countable subcover (Theorem A.4.1).

Having specified the domain, we construct Lebesgue measure.

Volume of rectangle. The volume of A = I1×· · ·× In is naturally defined as λ(A) =
λ(I1) · · · · · λ(In), with λ(Ik) being the length of the interval Ik. The usual rules
about multiplying zeroes and infinities will be in force (Remark 2.4.6).

Additivity onR. Suppose that the rectangle A has been partitioned into a finite
number of smaller disjoint rectangles Bk. Then ∑k λ(Bk), as we have defined
it, should equal λ(A).

For example, in the case of one dimension, a partition always looks like:

[a0, am] = [a0, a1) ∪ [a1, a2) ∪ · · · ∪ [am−1, am] ,

so the sum of lengths telescopes:

λ[a0, am] = (a1 − a0) + (a2 − a1) + · · ·+ (am − am−1) = am − a0 .

The intervals here may be changed so that the left-hand side becomes open
instead of the right, etc., without affecting the result.

For higher dimensions, we resort to an inductive argument. If we write the
sets A = A1 × · · · × An and Bk = B1

k × · · · × Bn
k as products of intervals, then

I(x ∈ A) = ∑
k

I(x ∈ Bk)

I(x1 ∈ A1) · · · I(xn ∈ An) = ∑
k

I(x1 ∈ B1
k) · · · I(xn ∈ Bn

k ) .

Let us fix the variables x2, . . . , xn; then both sides are simple functions of the
variable x1. We can integrate both sides with respect to x1. Although λ in
one dimension is not yet known to be countably additive, taking integrals of
simple functions is okay because the relevant properties depend only on finite
additivity — see Remark 2.4.7 and Lemma 2.4.8.∫

x1∈R
I(x1 ∈ A1) · · · I(xn ∈ An) = ∑

k

∫
x1∈R

I(x1 ∈ B1
k) · · · I(xn ∈ Bn

k )

λ(A1) I(x2 ∈ A2) · · · I(xn ∈ An) = ∑
k

λ(B1
k) I(x2 ∈ B1

k) · · · I(xn ∈ Bn
k ) .

Repeating this n− 1 more times thus shows λ(A) = ∑k λ(Bk).
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Volume on A. The volume of a disjoint union of rectangles is obviously defined as
the sum of the volumes of the component rectangles. This volume is well-
defined: if we have different decompositions,

⋃
i Ri =

⋃
j Sj, then taking the

common refinement Ri ∩ Sj, we have ∑i λ(Ri) = ∑i ∑j λ(Ri ∩ Sj) by additivity
on each individual rectangle Ri. But ∑j λ(Sj) equals this double sum also.

Countable additivity. It is clear that λ is finitely additive on A; we now prove
countable additivity.

According to Remark 5.1.7, it suffices to prove countable subadditivity in place
of plain additivity. Thus we suppose that C ∈ A, and C ⊆ ⋃∞

k=1 Bk for Bk ∈ A.

If we assume C is compact, and Bk are open, then we can use compactness
to obtain a finite sub-cover: C ⊆ ⋃m

k=1 Bk for some finite m. Then countable
subadditivity follows from finite subadditivity:

λ(C) ≤
m

∑
k=1

λ(Bk) ≤
∞

∑
k=1

λ(Bk) .

Suppose next that C is a bounded set in Rn. Then its closure C is compact,
and it evidently belongs to A too. The sets Bk may not be open, and they may
not cover C, but each set Bk can be slightly expanded and made open, in such
a way that the volumes λ(Bk) increase by at most ε/2k, and the new Bk now
cover C. The argument in the previous paragraph applies:

λ(C) ≤ λ(C) ≤
∞

∑
k=1

λ(Bk) + ε , then take ε↘ 0.

Finally, consider a set C that is unbounded. But countable subadditivity ap-
plies to the bounded set C ∩ [−a, a]n ∈ A:

λ(C ∩ [−a, a]n) ≤
∞

∑
k=1

λ(Bk) .

Direct computation shows that lim
a→∞

λ(C ∩ [−a, a]n) = λ(C) for C ∈ A.

Applying Carathéodory’s theorem we conclude:

5.4.4 THEOREM

Lebesgue measure in Rn exists, and it is uniquely determined by the assignment of
volumes of rectangles. It is translation-invariant.

Invariance under translations is readily verified by looking at formula for the
induced outer measure (Definition 5.1.1); or it can be proven axiomatically.

It is intuitive that Lebesgue measure should also be invariant under other rigid
motions such as rotations and reflections. As our construction of Lebesgue measure
is heavily coordinate-dependent (it “hard-codes” the standard basis of Rn), invari-
ance under rigid motion is hardly obvious, but it will be a consequence of Lemma
7.2.1.
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5.5 Existence of non-measurable sets

Are there any sets that are not Borel, or that cannot be assigned any volume?
The following theorem gives a classic example, and should also serve to convince

you why our strenuous efforts are necessary.

5.5.1 THEOREM (VITALI’S NON-MEASURABLE SET)
There exists a set in [0, 1] that is not Lebesgue-measurable. In other words, Lebesgue
measure cannot be defined consistently for all subsets of [0, 1].

Proof The key premise in this proof is translation-invariance. In particular, given any
measurable H ⊆ [0, 1], define its “shift with wrap-around”:

H ⊕ x = {h + x : h ∈ H, h + x ≤ 1} ∪ {h + x− 1 : h ∈ H, h + x > 1} .

Then λ(H ⊕ x) = λ(H).
Let x ∼ y for two real numbers x and y if x− y is rational. The interval [0, 1] is

partitioned by this equivalence relation. Compose a set H ⊂ [0, 1] by picking exactly
one element from each equivalence class, and also say 0 /∈ H. Then (0, 1] equals the
disjoint union of all H ⊕ r, for r ∈ [0, 1) ∩Q. Countable additivity leads to:

1 = λ((0, 1]) = ∑
r∈[0,1)∩Q

λ(H ⊕ r) = ∑
r∈[0,1)∩Q

λ(H) ,

a contradiction, because the sum on the right can only be 0 or ∞. Hence H cannot
be measurable. �

It has become obligatory to alert that the set H in the proof of Vitali’s theorem
comes from the axiom of choice. Robert Solovay has shown in 1970, essentially, that
if the axiom of choice is not available, then every set of real numbers is Lebesgue-
measurable. Since not having the axiom of choice would severely cripple the field
of analysis anyway, I prefer not to make a big fuss† about it.

The famous Hausdorff paradox and the Banach-Tarski paradox are related to Vitali’s
theorem; they all use the axiom of choice to dig up some pretty strange sets in R3.

5.6 Completeness of measures

Here we settle some technical points that were glossed over before.
Up to this point, whenever we discussed Lebesgue measure λ on Rn, we have

assumed that the domain of λ is B(Rn). Certainly λ can be defined on B(Rn), but
as we had remarked, the σ-algebraM that comes out of the Carathéodory extension
process may be bigger than B(Rn).

† For example, even standard calculus texts blithely assert the equivalence of continuity for real
functions and sequential continuity, without noting the proof requires the axiom of choice, or certain
weaker forms of it.



5. Construction of measures: Completeness of measures 55

The mystery is resolved by this observation: if θ is an outer measure (Definition
5.1.2), and θ(B) = 0, then θ(A) = 0 for any subset A ⊆ B. If, furthermore, B ∈ M,
then we see in Definition 5.1.4 that A ∈ M automatically for any A ⊆ B. We give a
name to this phenomenon:

5.6.1 DEFINITION (COMPLETENESS OF MEASURE)
A measure µ is complete if given any set of B of µ-measure zero, every subset of B is
µ-measurable (and necessarily must have measure zero).

Thus, λ defined on the σ-algebraM is complete.
On the other hand, it seems a bit tad unlikely that λ restricted to B(Rn) is com-

plete, seeing that the definition of B(Rn) does not even involve measure functions.
The proof will be left to you.

Knowing that a measure is complete is sometimes convenient. If a sequence of
measurable functions fn converges to some arbitrary function f pointwise almost
everywhere, it does not follow that f is measurable unless the measure space is com-
plete. (See also Remark 3.1.6.)

5.6.2 THEOREM

Suppose the measure space X is complete.

À If f : X → Y is a measurable function and f = g almost everywhere, then g is
measurable.

Á If fn : X → R are measurable functions that converge to another function g
almost everywhere, then g is measurable.

Proof Let f (x) = g(x) for x ∈ A, where Ac has measure zero. For any measurable
E ⊆ Y,

g−1(E) =
(

g−1(E) ∩ A
) ∪ B =

(
f−1(E) ∩ A

) ∪ B , B = g−1(E) ∩ Ac ,

and B is measurable since B ⊆ Ac under a complete measure space. Thus g−1(E) is
measurable, and this proves part À. For part Á, set f = lim supn fn. �

Nevertheless, if a measure space is not complete, for integration purposes we
ought to be able to assume g (in Theorem 5.6.2) is measurable anyway, since the
“bad” sets “really” have measure zero anyway. Formally, it can be done by this
procedure:

5.6.3 THEOREM

Let (X,M, µ) be a measure space. Define

M = {A ∪ N | A ∈ M and N ⊆ B for some B ∈ M with µ(B) = 0} ,

and define µ(A ∪ N) = µ(A) for any E ∈ M represented as E = A ∪ N as above.
Then (X,M, µ) is a complete measure space, called the completion of (X,M, µ);

and µ is the unique extension of µ ontoM.
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5.6.4 THEOREM

Let (X,M, µ) be a measure space, and (X,M, µ) be its completion. If f : X → R

isM-measurable, then there is aM-measurable function g : X → R that equals f
almost everywhere.

Another way to get at the completion of a measure is to plug it in the Carathédory
extension procedure:

5.6.5 THEOREM

Let (X,A, µ) be a σ-finite measure space. Then the measure space (X,M, µ∗|M)
obtained from the Carathéodory extension is exactly the completion of (X,A, µ).

The Lebesgue measure λ is usually considered to be defined on L = B(Rn),
though in practical applications the difference between L and B(Rn) is almost hair-
splitting. See also Remark 2.3.6. Sets in L are called Lebesgue-measurable.

5.7 Exercises

5.1 (Characterization of Lebesgue measure zero) Elementary textbooks that talk about
measure zero without measure theory all use the following definition. A set A ∈ Rn

has (Lebesgue) measure zero if and only if,

+ for every ε > 0, the set A can be covered by a countable number of open (or
closed) rectangles whose total volume is < ε.

Show how this follows from our definition of Lebesgue measure.

5.2 (Proof of finite additivity for Lebesgue measure) The short proof of the finite addi-
tivity of the Lebesgue pre-measure λ given in section 5.4 seems almost miraculous.
What is actually happening in that proof?

It is not hard to see intuitively that finite additivity for rectangles basically only
involves the fundamental properties of real numbers such as commutativity of ad-
dition, additive cancellation, and distributivity of multiplication over addition. But
if you had wanted to explicitly write down a summation, that when its terms are
rearranged, would show finite additivity, what is the partition on the rectangles you
would use?

5.3 (Probabilities of coin tosses) Using the probability measure P appearing in section 5.3,
compute the probabilities that:

À all the coin tosses come up heads.

Á every other coin toss come up heads.
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Â there is eventually a repeating pattern of fixed period in the coin toss sequence.

Ã infinitely many heads come up.

Ä the first head that comes up must be followed by another head.

Å the series
∞
∑

n=1

(−1)Xn

n converges, where Xn are the coin-toss outcomes repre-

sented as 0 or 1.

5.4 (Homeomorphism of coin-toss space to unit interval) Verify the claim in section 5.3,
that the binary-expansion mapping T : {0, 1}N → [0, 1] is measurable.

In fact, it is a continuous mapping. If we identify those sequences that are binary
expansions of the same number (those that end with 0111 · · · and the corresponding
one ending with 1000 · · · ), then the quotient space of {0, 1}N is homeomorphic to
[0, 1] via T.

5.5 (From coin tosses to Lebesgue measure) Show that the measure λ transported from
the coin-toss measure (section 5.3) is a realization of the Lebesgue measure on [0, 1].
Also, extend this λ so that it covers the whole real line.

5.6 (From Lebesgue measure to coin tosses) Do the reverse transformation: construct
the coin-toss measure using Lebesgue measure on [0, 1] as the raw material — that
is, without invoking Carathéodory’s extension theorem separately again.

5.7 (Infinite product of Lebesgue measures) Construct a probability space (Ω,F , P) and
random variables Xn : Ω→ [0, 1] on that space, such that

P(X1 ∈ E1, . . . , Xn ∈ En) = P(X1 ∈ E1) · · ·P(Xn ∈ En) = λ(E1) · · · λ(En)

for any n, where λ is Lebesgue measure on [0, 1]. Schematically, P = λ⊗ λ⊗ · · · ,
the analogue of the finite product studied in chapter 6.

Interpretation: the random variables Xn are independent and identically dis-
tributed, with the uniform distribution on [0, 1]. This result can be used, in general,
to construct a probability space containing a countable number independent ran-
dom variables, with any distributions.

Hint: Take Ω = [0, 1]N. Alternatively, take Ω = {0, 1}N, the coin-toss space.

5.8 (Measurable sets for coin tosses) Identify the σ-algebra F constructed for the coin-
toss measure in section 5.3.

5.9 (Borel’s normal number theorem) The binary digit space {0, 1} used for the coin-
toss probability space can obviously be replaced by {0, 1, . . . , β − 1} for any digit
base β.

A number x ∈ [0, 1] is normal in base β if every digit occurs with equal frequency
in the base-β expansion of x:

lim
n→∞

number of the first n digits of x that equal k
n

=
1
β

, k = 0, 1, . . . , β− 1 .
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Show that almost every number in [0, 1] (under Lebesgue measure) is normal for
any base.

5.10 (Shift invariance) Consider the coin-toss measure P on Ω = {0, 1}N from section 5.3.
Define the left-shift operator

L(ω1, ω2, . . . ) = (ω2, ω3, . . . ) .

Then L : Ω→ Ω is measurable, and P(L−1E) = P(E) for all events E ⊆ Ω.

5.11 (Translation invariance) Prove translation invariance of Lebesgue measure axiomat-
ically.

5.12 (Cantor set) Show that the Cantor set has Lebesgue-measure zero.

5.13 (Lebesgue-Cantor function)

5.14 (σ-finiteness hypothesis for uniqueness) Is the σ-finiteness hypothesis for the unique-
ness of measures necessary?

5.15 (Approximation by algebra) Demonstrate the following without outer-measure tech-
nology.

Let µ be a finite pre-measure defined on an algebraA, and λ be some extension of
µ to σ(A). For every E ∈ σ(A) and ε > 0, there exists A ∈ A such that λ(A∆E) < ε.

Phrased in another way, every set in σ(A) can be approximated by the generat-
ing sets in A, and the approximation error, measured using λ, can be made as small
as we like.

Hint: If I gave you an explicit representation of a set in E ∈ σ(A) as a countable
union of sets in A, how would you actually go about finding an approximation to E
given some error tolerance ε?

5.16 (Uniqueness of measures) Use Exercise 5.15 to prove uniqueness of the extension
of a σ-finite pre-measure defined on an algebra.



Chapter 6

Integration on product spaces

This chapter demonstrates the ever-useful result that integrals over higher dimen-
sions (so-called “multiple integrals”) can be evaluated in terms of iterated integrals
over lower dimensions. For example,∫

[0,a]×[0,b]
f (x, y) dx dy =

∫ b

0

[∫ a

0
f (x, y) dx

]
dy =

∫ a

0

[∫ b

0
f (x, y) dy

]
dx .

Compared to the machinations required for the analogous result using Riemann
integrals, the Lebesgue version is conceptually quite simple. The hard part is show-
ing all the stuff involved to be measurable.

6.1 Product measurable spaces

Since a two-variable function is naturally seen as a function over a product space,
we begin by studying such spaces.

6.1.1 DEFINITION (MEASURABLE RECTANGLE)
Let (X,A) and (Y,B) be two measurable spaces. A measurable rectangle in X × Y
is a set of the form A× B, where A ∈ A and B ∈ B.

The σ-algebra generated by all the measurable rectangles A× B is the product
σ-algebra of A and B, and is denoted by A⊗ B. This will be the σ-algebra we use
for X×Y.

6.1.2 DEFINITION (CROSS SECTIONS)
Let E be a measurable set from (X×Y,A⊗B). Its cross sections in Y and X are:

Ex = {y ∈ Y : (x, y) ∈ E} , x ∈ X .
Ey = {x ∈ X : (x, y) ∈ E} , y ∈ Y .
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6.1.3 THEOREM (MEASURABILITY OF CROSS SECTION)
If E ∈ A⊗B, then Ey ∈ A, and Ex ∈ B.

Proof We prove the theorem for Ey; the proof for Ex is the same.
Consider the collection M = {E ∈ A ⊗ B : Ey ∈ A}. We show that M is a

σ-algebra containing the measurable rectangles; then it must be all of A ⊗ B, and
this would establish the theorem.

À Suppose E = A × B is a measurable rectangle. Then Ey = A when y ∈ B,
otherwise Ey = ∅. In both cases Ey ∈ A, so E ∈ M.

Á ∅y = {x ∈ X : (x, y) ∈ ∅} = ∅ ∈ A, soM contains ∅.

Â If E1, E2, . . . ∈ M, then (
⋃

En)y =
⋃

Ey
n ∈ A. SoM is closed under countable

union.

Ã If E ∈ M, and F = Ec, then Fy = {x ∈ X : (x, y) /∈ E} = X \ Ey ∈ A. SoM is
closed under complementation. �

6.1.4 THEOREM (MEASURABILITY OF FUNCTION WITH FIXED VARIABLE)
Let (X×Y,A⊗B) and (Z,M) be measurable spaces.

If f : X × Y → Z is measurable, then the functions fy : X → Z, fx : Y → Z
obtained by holding one variable fixed are also measurable.

Proof Again we consider only fy. Let Iy : X → X × Y be the inclusion mapping
Iy(x) = (x, y). Given E ∈ A ⊗ B, by Theorem 6.1.3 I−1

y (E) = Ey ∈ A, so Iy is a
measurable function. But fy = f ◦ Iy. �

If X and Y are topological spaces, such as Rn and Rm, then they come with their
own product topology. Thus we have two structures that are relevant:

B(X×Y) and B(X)⊗B(Y) .

In general, it seems that B(X × Y) should be the bigger of the two structures.
For the rectangles U × V, for open sets U ⊆ X and V ⊆ Y, form a basis for the
topology of X × Y, but topologies allow arbitrary unions while the σ-algebras only
allow countable unions. However, if arbitrary unions always reduce to countable
ones, the two structures should be equal.

6.1.5 LEMMA (GENERATING SETS OF PRODUCT σ-ALGEBRA)
Let X ∈ A′ ⊆ 2X and Y ∈ B′ ⊆ 2Y. If A = σ(A′) and B = σ(B′), then A⊗ B =
σ({U ×V | U ∈ A′ , V ∈ B′}).
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Proof Clearly,

M = σ({U ×V | U ∈ A′ , V ∈ B′}) ⊆ σ({A× B | A ∈ A , B ∈ B}) = A⊗B .

Next, consider the family {A ⊆ X | A×Y ∈ M}. It is evidently a σ-algebra that
contains A′ and hence A. In other words, A×Y ∈ M for all A ∈ A.

Switching the roles of X and Y and repeating the argument, we have X × B ∈
M for B ∈ B. Thus (A × Y) ∩ (X × B) = A × B is in M too, and this shows
M⊇ A⊗B. �

6.1.6 THEOREM (PRODUCT BOREL σ-ALGEBRA)
If X and Y are second-countable topological spaces (e.g. Rn), then B(X × Y) =
B(X)⊗B(Y).

Proof Let {Ui} and {Vj} be countable bases for the topological spaces X and Y re-
spectively. Then {Ui × Vj} is a countable basis for the product topological space
X×Y. Then B(X×Y) ⊆ B(X)⊗B(Y) since Ui ×Vj ∈ B(X)⊗B(Y).

On the other hand, by Lemma 6.1.5,

B(X)⊗B(Y) = σ({U ×V | U ⊆ X, V ⊆ Y open}) ⊆ B(X×Y) . �

6.2 Cross-sectional areas

We would like to take the cross-sections defined in Definition 6.1.2, and calculate
their areas à la Cavalieri’s principle. So we want to have a theorem like Theorem
6.2.3 below.

Its proof requires the following technical tool, which comes equipped with a
definition.

6.2.1 DEFINITION (MONOTONE CLASS)
A familyA of subsets of X is a monotone class if it is closed under increasing unions
and decreasing intersections.

The intersection of any set of monotone classes is a monotone class. The smallest
monotone class containing a given set G is the intersection of all monotone classes
containing G. This construction is analogous to the one for σ-algebras, and the result
is also said to be the monotone class generated by G.

6.2.2 THEOREM (MONOTONE CLASS THEOREM)
If A be an algebra on X, then the monotone class generated by A coincides with the
σ-algebra generated by A.
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Proof Since a σ-algebra is a monotone class, the generated σ-algebra contains the
generated monotone classM. So we only need to showM is a σ-algebra.

We first claim thatM is actually closed under complementation. LetM′ = {S ∈
M : X \ S ∈ M} ⊆ M. This is a monotone class, and it contains the algebra A. So
M =M′ as desired.

To prove thatM is closed under countable unions, we only need to prove that
it is closed under finite unions, for it is already closed under countable increasing
unions.

First let A ∈ A, and N (A) = {B ∈ M : A ∪ B ∈ M} ⊆ M. Again this is a
monotone class containing the algebra A; thus N (A) =M.

Finally, let S ∈ M, with the same definition of N (S). The last paragraph,
rephrased, says that A ⊆ N (S). And N (S) is a monotone class containing A by
the same arguments as the last paragraph. Thus N (S) =M, proving the claim. �

6.2.3 THEOREM (MEASURABILITY OF CROSS-SECTIONAL AREA FUNCTION)
Let (X,A, µ), (Y,B, ν) be σ-finite measure spaces (Definition 5.2.4). If E ∈ A⊗B,

À ν(Ex) is a measurable function of x ∈ X.

Á µ(Ey) is a measurable function of y ∈ Y.

Proof We concentrate on µ(Ey). Assume first that µ(X) < ∞. Let

M = {E ∈ A⊗B : µ(Ey) is a measurable function of y} .

M is equal to A⊗B, because:

À If E = A× B is a measurable rectangle, then µ(Ey) = µ(A)I(y ∈ B) which is a
measurable function of y. If E is a finite disjoint union of measurable rectangles
En, then µ(Ey) = ∑n µ(Ey

n) which is also measurable.

The measurable rectangles form a semi-algebra, analogous to the rectangles
in Rn. Then M contains the algebra of finite disjoint unions of measurable
rectangles (Theorem 5.4.3).

Á If En are increasing sets in M (not necessarily measurable rectangles), then
µ
(
(
⋃

n En)y) = µ(
⋃

n Ey
n) = lim

n→∞
µ(Ey

n) is measurable, so
⋃

n En ∈ M.

Similarly, if En are decreasing sets inM, then using limits we see that
⋂

n En ∈
M. (Here it is crucial that Ey

n have finite measure, for the limiting process to
be valid.)

Â These arguments show thatM is a monotone class, containing the algebra of
finite unions of measurable rectangles. According to the monotone class theo-
rem (Theorem 6.2.2),Mmust therefore be the same as the σ-algebra A⊗B.
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Thus we know µ(Ey) is measurable under the assumption that µ(X) < ∞. For
the σ-finite case, let Xn ↗ X with µ(Xn) < ∞, and re-apply the arguments replacing
µ by the finite measure µn(F) = µ(F ∩ Xn). Then µ(Ey) = lim

n→∞
µn(Ey) is measur-

able. �

6.3 Iterated integrals

So far we have not considered the product measure which ought to assign to a mea-
surable rectangle a measure that is a product of the measures of each of its sides.
Such a measure can be obtained from the Carathéodory extension process, but it is
just as easy to give an explicit integral formula:

6.3.1 THEOREM (PRODUCT MEASURE AS INTEGRAL OF CROSS-SECTIONAL AREAS)
Let (X,A, µ), (Y,B, ν) be σ-finite measure spaces. There exists a unique product
measure µ⊗ ν : A⊗B → [0, ∞], such that

(µ⊗ ν)(E) =
∫

x∈X

∫
y∈Y

I((x, y) ∈ E) dν︸ ︷︷ ︸
ν(Ex)

dµ =
∫

y∈Y

∫
x∈X

I((x, y) ∈ E) dµ︸ ︷︷ ︸
µ(Ey)

dν .

Proof Let λ1(E) denote the double integral on the left, and λ2(E) denote the one on
the right. These integrals exist by Theorem 6.2.3. λ1 and λ2 are countably additive by
Beppo-Levi’s theorem (Theorem 3.2.1), so they are both measures on A⊗ B. More-
over, if E = A× B, then expanding the two integrals shows λ1(E) = µ(A)ν(B) =
λ2(E).

It is clear that X × Y is σ-finite under either λ1 or λ2, so by uniqueness of mea-
sures (Corollary 5.2.7), λ1 = λ2 on all of A⊗B. �

There is not much work left for our final results:
6.3.2 THEOREM (FUBINI)

Let (X,A, µ) and (Y,B, ν) be σ-finite measure spaces. If f : X × Y → R is µ ⊗ ν-
integrable, then∫

X×Y
f d(µ⊗ ν) =

∫
x∈X

[∫
y∈Y

f (x, y) dν
]

dµ =
∫

y∈Y

[∫
x∈X

f (x, y) dµ
]

dν .

This equation also holds when f ≥ 0 (if it is merely measurable, not integrable).

Proof The case f = I(E) is just Theorem 6.3.1. Since all three integrals are additive,
they are equal for non-negative simple f , and hence also for all other non-negative
f , by approximation and monotone convergence.

For f not necessarily non-negative, let f = f + − f− as usual and apply linearity.
Now it may happen that

∫
y∈Y f±(x, y) dν might be both ∞ for some x ∈ X, and

so
∫

y∈Y f (x, y) dν would not be defined. However, if f is µ⊗ ν-integrable, this can
happen only on a set of measure zero in X (see the next theorem). The outer integral
will make sense provided we ignore this set of measure zero. �
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6.3.3 THEOREM (TONELLI)
Let (X,A, µ) and (Y,B, ν) be σ-finite measure spaces, and f : X × Y → R be µ⊗ ν-
measurable. Then f is µ⊗ ν-integrable if and only if∫

x∈X

[∫
y∈Y
| f (x, y)| dν

]
dµ < ∞

(or with X and Y reversed). Briefly, the integral of f can be described as being
absolutely convergent.

Consequently, if a double integral is absolutely convergent, then it is valid to
switch the order of integration.

Proof Immediate from Fubini’s theorem applied to the non-negative function | f |. �

6.3.4 EXAMPLE. When f is not non-negative, the hypothesis of absolute convergence is
crucial for switching the order of integration. An elementary counterexample is the
doubly-indexed sequence am,n = (−m)n/n! integrated with the counting measure.
We have ∑n am,n = e−m, so ∑m ∑n am,n = (1− e−1)−1, but ∑m am,n diverges for all n.

6.3.5 EXAMPLE. This is another counterexample, using Lebesgue measure on [0, 1]× [0, 1].
Define

f (x) =
x2 − y2

(x2 + y2)2 , (x, y) 6= (0, 0) .

We have
∂

∂y

(
y

x2 + y2

)
=

x2 − y2

(x2 + y2)2 =
∂

∂x

( −x
x2 + y2

)
,

giving ∫ 1

0

∫ 1

0

x2 − y2

(x2 + y2)2 dy dx =
∫ 1

0

dx
1 + x2 =

π

4∫ 1

0

∫ 1

0

x2 − y2

(x2 + y2)2 dx dy = −
∫ 1

0

dy
1 + y2 = −π

4
.

Thus f cannot be integrable. This can be seen directly by using polar coordinates:∫ 1

0

∫ 1

0

∣∣∣∣ x2 − y2

(x2 + y2)2

∣∣∣∣ dx dy ≥
∫ π/2

0
|cos 2θ| dθ

∫ 1

0

1
r

dr = ∞ .
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6.4 Exercises

6.1 (Alternative construction of product measure) Construct the product measure µ⊗ ν
using Carathéodory’s theorem.

Hint: we have already done a similar thing before.

6.2 (σ-finiteness is necessary for Fubini’s theorem) Cook up a counterexample to show
that Fubini’s Theorem does not hold when one of the measure spaces in the product
measure space is not σ-finite.

6.3 (Infinite product σ-algebra) There is a definition of the product σ-algebra that works
with any finite or infinite number of factors. It parallels the construction of the prod-
uct topology.

If {(Xα,Mα)}α∈Λ are any measurable spaces, then⊗
α∈Λ

Mα = σ({π−1
α (E) | α ∈ Λ , E ∈ Mα}) ,

where πα are the coordinate projections from the product space to Xα. Observe that⊗
α∈ΛMα is the smallest σ-algebra such that the projections πα are measurable.

Show that this definition coincides with the definition in the text for the case of
two factors. Also extend Lemma 6.1.5 and Theorem 6.1.6 to cover the infinite case;
you may need to assume Λ is countable.

6.4 (Measurability of sum and product) Give a new proof using product σ-algebras,
that if f , g : X → R are measurable, then so is f + g, f g, and f /g. The new proof
will be conceptually easier than the one we presented for Theorem 2.3.11, when we
had not yet introduced product measure spaces.

6.5 (Measurability of metric) Suppose X is a measurable space, and Y is a separable met-
ric space with metric d. Let there be two measurable functions f , g : X → Y. Then
the map d( f , g) : X → R is measurable.

6.6 (Functions continuous in each variable) Suppose f : Rn × Rm → R is a function
such that:

À f (x, y) is measurable as x is varied while y is held fixed;

Á f (x, y) is continuous as y is varied while x is held fixed.

We can re-construct f on its entire domain as a limit using only countably infinitely
many of the functions x 7→ f (x, yn). Thus, a function of multiple real variables that
is only continuous in each variable separately is still measurable in B(R× · · · ×R).

6.7 (Associativity of product measure) Prove that ⊗ is associative for σ-algebras and
σ-finite measures.
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6.8 (Lebesgue measure as a product) If λn denotes the Lebesgue measure in n dimen-
sions, we might try to summarize the result for product measures as:

λn+m = λn ⊗ λm .

However, strictly speaking this equation is not correct, since a product measure is
almost never complete (why?), while the left-hand side is a complete measure. Show
that if we take the completion of the right-hand side, then the equation becomes
correct.

This, of course, gives yet another method to construct Lebesgue measure in n
dimensions starting from one: λn = λ1 ⊗ · · · ⊗ λ1.

6.9 (Sine integral) Compute

lim
x→∞

∫ x

0

sin t
t

dt

by considering the integral
∫ ∞

0

∫ x
0 e−ty sin t dt dy and switching the order of integra-

tion. However, you will need to be careful about the switch because
∫ ∞

0 |sin(t)/t| dt
diverges.

6.10 (Area under a graph) Prove rigorously this statement from elementary calculus:
“The integral

∫ b
a f (x) dx, for any non-negative Riemann-integrable f , is the area un-

der the graph of f .”
(You will have to show that the region under a graph is Lebesgue-measurable in

R2 in the first place.)
My friend once suggested that the Lebesgue integral

∫
X f dµ could have been

more simply defined as the measure of the region “under the graph of f ”, once we
have in hand the measure µ (the theory in chapter 5 is entirely separate from in-
tegration). Unfortunately this idea falls down on one crucial point. What is the
obstacle?

6.11 (β function) Show, using iterated integration, that the Γ function satisfies:

Γ(x) Γ(y)
Γ(x + y)

= β(x, y) =
∫ 1

0
tx−1(1− t)y−1 dt , x, y > 0 .

6.12 (Monotone class theorem for functions) Let X be any set; we consider the set RX

of functions from X to R, which forms a vector subspace under pointwise addition
and scalar multiplication.

For RX there are the two “lattice” operations:

f ∨ g = max( f , g) ,
∨
α

fα = sup
α

fα ,

f ∧ g = min( f , g) ,
∧
α

fα = inf
α

fα .
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(At first glance, these ∨ (“join”) and ∧ (“meet”) symbols may seem to be extraneous
notation, but they draw the connection to the ∪ and ∩ operations for sets.) A set
A ⊆ RX is a lattice if it is closed under finite ∨ and ∧.

A set A ⊆ RX is a monotone class if it is closed under limits of increasing or de-
creasing functions (provided that the limits are finite everywhere on X). The mono-
tone class generated by a set A ⊆ RX is the smallest monotone class containing A.

Then we have this result analogous to the one for sets: If A ⊆ RX is a vector
subspace that is also a lattice, then the monotone class generated by A is a vector
subspace closed under countable ∨ and ∧.



Chapter 7

Integration over Rn

This chapter treats basic topics on the Lebesgue integral over Rn not yet taken care
of by the abstract theory. They may be read in any order.

7.1 Riemann integrability implies Lebesgue integrability

You have probably already suspected that any function that is Riemann-integrable
is also Lebesgue-integrable, and certainly with the same values for the two integrals.
We shall prove this formally.

First, we recall one definition of Riemann integrability. (This definition is differ-
ent from most, but is easily seen to be equivalent; it makes our proofs a good deal
simpler.)

Let f : A→ R be a bounded function on a bounded rectangle A ⊆ Rm. Consider
R-valued functions that are simple with respect to a rectangular partition of A, oth-
erwise known as step functions. Step functions are obviously both Riemann- and
Lebesgue- integrable with the same values for the integral. The lower and upper
Riemann† integrals for f are:

L ( f ) = sup
{∫

A
l dλ : step functions l ≤ f

}
U ( f ) = inf

{∫
A

u dλ : step functions u ≥ f
}

.

We always have L ( f ) ≤ U ( f ); we say that f is (properly) Riemann-integrable if
L ( f ) = U ( f ), and the Riemann integral of f is defined as L ( f ) = U ( f ).

Equivalently, f is Riemann-integrable when there exists sequences of lower sim-
ple functions ln ≤ f , and upper simple functions un ≥ f , such that

lim
n→∞

∫
A

ln = L ( f ) = U ( f ) = lim
n→∞

∫
A

un .

†More properly attributed to Gaston Darboux.
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7.1.1 THEOREM (RIEMANN INTEGRABILITY IMPLIES LEBESGUE INTEGRABILITY)
Let A ⊂ Rm be a bounded rectangle. If f : A → R is properly Riemann-integrable,
then it is also Lebesgue-integrable (with respect to Lebesgue measure) with the same
value for the integral.

Proof Choose a sequence ln and un as above. Let L = supn ln and U = infn un.
Clearly, these are measurable functions, and we have

ln ≤ L ≤ f ≤ U ≤ un .

Lebesgue-integrating and taking limits,

lim
n→∞

∫
ln ≤

∫
L ≤

∫
U ≤ lim

n→∞

∫
un .

But the limit on the two sides are the same, because the Riemann and Lebesgue
integrals for ln and un coincide, so we must have

∫
(U− L) = 0. Then U = L almost

everywhere, and U (or L) equals f almost everywhere. Since Lebesgue measure is
complete, f is a Lebesgue-measurable function (Theorem 5.6.2).

Finally, the Lebesgue integral
∫

f , which we now know exists, is squeezed in
between the two limits on the left and the right, that both equal the Riemann integral
of f . �

Having obtained a satisfactory answer for proper Riemann integrals, we turn
briefly to improper Riemann integrals. Convergent improper integrals can be classed
into two types: absolutely convergent and conditionally convergent. A typical ex-
ample of the latter is:

lim
x→∞

∫ x

0

sin t
t

dt =
π

2
, for which lim

x→∞

∫ x

0

∣∣∣∣sin t
t

∣∣∣∣ dt = ∞ .

Since the Lebesgue integral is defined by integrating positive and negative parts
separately, it cannot represent conditionally convergent integrals that converge by
subtractive cancellation. A little thought shows that it is an intrinsic limitation of
abstract measure theory: any integrable f : X → R must satisfy∫

X
f =

∫
E1

f +
∫

E2

f +
∫

E3

f + · · ·

for any partition {En} of X; yet we can re-arrange En in any way we like, so the
series on the right is forced to be absolutely convergent.

Thus, in the context of Lebesgue measure theory, conditionally convergent in-
tegrals must still be handled by ad-hoc methods. On the other hand, absolutely
convergent integrals are completely subsumed in the Lebesgue theory:

7.1.2 THEOREM (ABSOLUTELY-CONVERGENT IMPROPER RIEMANN INTEGRALS)
Let f : Rn → R be a function for which the limit of proper Riemann integrals

lim
n→∞

∫
An

| f (x)| dx
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is convergent, for some sequence of bounded rectangles An increasing to Rn. Then
the improper Riemann integral of f over Rn, if it exists, equals its Lebesgue integral:

lim
n→∞

∫
An

f (x) dx =
∫

Rn
f (x) dx .

Proof Theorem 7.1.1 says each proper Riemann integral over An equals the Lebesgue
integral. The monotone convergence theorem, applied to fn = | f |I(An), shows that
the Lebesgue integral

∫
Rn | f (x)| dx is finite. The result follows from the dominated

convergence of fn = f I(An). �

7.2 Change of variables in Rn

This section will be devoted to completing the proof of the differential change of
variables formula, Theorem 3.4.4. As we have noted, it suffices to prove the follow-
ing.

7.2.1 LEMMA (VOLUME DIFFERENTIAL)
Let g : X → Y be a diffeomorphism between open sets in Rn. Then for all measur-
able sets A ⊆ X,

λ(g(A)) =
∫

g(A)
1 =

∫
A
|det Dg| . `

Proof We first begin with two simple reductions.

À It suffices to prove the lemma locally.

That is, suppose there exists an open cover of X, {Uα}, so that the equation
` holds for measurable A contained inside one of the Uα. Then equation `

actually holds for all measurable A ⊆ X.

Proof By passing to a countable subcover (Theorem A.4.1), we may assume
there are only countably many Ui. Define the disjoint measurable sets Ei =
Ui \ (U1 ∪ · · · ∪Ui−1), which also cover X. And define the two measures:

µ(A) = λ(g(A)) , ν(A) =
∫

A
|det Dg| .

Now let A ⊆ X be any measurable set. We have A ∩ Ei ⊆ Ui, so µ(A ∩ Ei) =
ν(A ∩ Ei) by hypothesis. Therefore,

µ(A) = µ
(⋃

i

A ∩ Ei

)
= ∑

i
µ(A ∩ Ei) = ∑

i
ν(A ∩ Ei) = ν(A) .

�
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Á Suppose equation ` holds for two diffeomorphisms g and h, and all mea-
surable sets. Then it holds for the composition diffeomorphism g ◦ h, and all
measurable sets.

Proof For any measurable A,∫
g(h(A))

1 =
∫

h(A)
|det Dg| =

∫
A
|(det Dg) ◦ h| · |det Dh| =

∫
A
|det D(g ◦ h)| .

The second equality follows from Theorem 3.4.4 applied to the diffeomor-
phism h, which is valid once we know λ(h(B)) =

∫
B|det Dh| for all measurable

B. �

We proceed to prove the lemma by induction, on the dimension n.

Base case n = 1. Cover X by a countable set of bounded intervals Ik in R. By reduc-
tion À, it suffices to prove the lemma for measurable sets contained in each
of the Ik individually. By the uniqueness of measures (Corollary 5.2.7), it also
suffices to show µ = ν only for the intervals [a, b], (a, b), etc. But this is just the
Fundamental Theorem of Calculus:∫

g([a,b])
1 = |g(b)− g(a)| = |

∫ b

a
g′| =

∫ b

a
|g′| .

For the last equality, remember that g, being a diffeomorphism, must have a
derivative that is positive on all of [a, b] or negative on all of [a, b].

If the interval is not closed, say (a, b), then we may not be able to apply the
Fundamental Theorem directly, but we may still obtain the desired equation
by taking limits:∫

g((a,b))
1 = lim

n→∞

∫
g([a+ 1

n ,b− 1
n ])

1 = lim
n→∞

∫
[a+ 1

n ,b− 1
n ]
|g′| =

∫
(a,b)
|g′| .

Induction step. According to Lemma A.3.3 in the appendix, the diffeomorphism
g can always be factored locally (i.e. on a sufficiently small open set around
each point x ∈ X) as g = hk ◦ · · · ◦ h2 ◦ h1, where each hi is a diffeomorphism
and fixes one coordinate of Rn. By reduction À, it suffices to consider this
local case only. By reduction Á, it suffices to prove the lemma for each of the
diffeomorphisms hi.

So suppose g fixes one coordinate. For convenience in notation, assume g
fixes the last coordinate: g(u, v) = (hv(u), v), for u ∈ Rn−1, v ∈ R, and hv
are functions on open subsets of Rn−1. Clearly hv are one-to-one, and most
importantly, det Dhv(u) = det Dg(u, v) 6= 0.

Next, let a measurable set A be given, and consider its projection and cross-
section:

V = {v ∈ R : (u, v) ∈ A} , Uv = {u ∈ Rn−1 : (u, v) ∈ A} .
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We now apply Fubini’s theorem (Theorem 6.3.2) and the induction hypothesis
on the diffeomorphisms hv:∫

g(A)
1 =

∫
v∈V

∫
hv(Uv)

1

=
∫

v∈V

∫
u∈Uv

|det Dhv(u)|

=
∫

v∈V

∫
u∈Uv

|det Dg(u, v)| =
∫

A
|det Dg| . �

The proof presented here is an “algebraic” one; the only fact about the determi-
nant that was ever used is that it is a multiplicative function on matrices. This comes
as no surprise — the determinant can be defined as the unique matrix function sat-
isfying certain multi-linearity axioms, and those axioms characterize the signed vol-
ume function on parallelograms.

Most treatises on measure theory go for a more direct and “geometric” proof of
Lemma 7.2.1. They first demonstrate that equation ` holds for linear transforma-
tions g = T applied to rectangles A, then they show it holds in general by approxi-
mation arguments. We elaborate on these arguments in the exercises.

Our approach, adapted from [Munkres], has the advantage of not needing nitty-
gritty “ε” estimates, and it handles the special case for a linear transformation g = T
in one fell swoop.

7.3 Integration on manifolds

So far, we have worked chiefly only with the measure of n-dimensional volume on
Rn. There is also a concept of k-dimensional volume, defined for k-dimensional
subsets of Rn.

A manifold is a generalization of curves and surfaces to higher dimensions. We
shall concentrate on differentiable manifolds embedded in Rn; the theory is elu-
cidated in [Spivak2] or [Munkres]. Here we give a definition of the k-dimensional
volume for k-dimensional manifolds that does not require those dreaded “partitions
of unity”.

7.3.1 DEFINITION (VOLUME OF k-DIMENSIONAL PARALLELOPIPED.)
Define, for any vectors w1, . . . , wk ∈ Rn (represented under the standard basis or
any other orthonormal basis),

V(w1, . . . , wk) =
√

det
[
w1 w2 . . . wk

]tr [w1 w2 . . . vk
]

=
√

det [wi · wj]i,j=1,...,k ,

This is the k-dimensional volume of a k-dimensional parallelopiped spanned by the
vectors w1, . . . , wk in Rn.
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One can easily show that this volume is invariant under orthogonal transfor-
mations, and that it agrees with the usual k-dimensional volume (as defined by the
Lebesgue measure) when the parallelopiped lies in the subspace Rk × 0 ⊆ Rn.

7.3.2 DEFINITION (VOLUME OF k-DIMENSIONAL PARAMETERIZED MANIFOLD)
Suppose a k-dimensional manifold M ⊆ Rn is covered by a single coordinate chart
α : U → M, for U ⊆ Rk open. Let Dα denote the n-by-k matrix

Dα =
[

dα

dt1

dα

dt2
. . .

dα

dtk

]
.

The k-dimensional volume of any E ∈ B(M) is defined as:

ν(E) =
∫

α−1(E)
V(Dα) dλ .

The integrand, of course, is supposed to represent “infinitesimal” elements of
surface area (k-dimensional volume), or approximations of the surface area of E by
polygons that are “close” to E. As indicated by the quotation marks, these assertions
about “surface area” are not rigorous, and we will not belabor to prove them. We
take the equation above as our definition of k-dimensional volume. But it should be
pointed out that there are better theories of k-dimensional volume available, such
as the Hausdorff measure, which are intrinsic to the sets being measured, instead of
our computational theory.

7.3.3 DEFINITION (VOLUME OF k-DIMENSIONAL MANIFOLD)
If the manifold M is not covered by a single coordinate chart, but more than one, say
αi : Ui → M, i = 1, 2, . . . , then partition M with W1 = α1(U1), Wi = αi(Ui) \Wi−1,
and define

ν(E) = ∑
i

∫
α−1

i (E∩Wi)
V(Dαi) dλ .

It is left as an exercise to show that ν(E) is well-defined: it is independent of the
coordinate charts αi used for M.

Finally, the scalar integral of f : M→ R over M is simply∫
M

f dν .

And the integral of a differential form ω on an oriented manifold M is∫
p∈M

ω
(

p ; T(p)
)

dν ,

where T(p) is an orthonormal frame of the tangent space of M at p, oriented accord-
ing to the given orientation of M.
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Again it is not hard to show that the formulae given here are exactly equiva-
lent to the classical ones for evaluating scalar integrals and integrals of differential
forms, which are of course needed for actual computations. But there are several
advantages to our new definitions. First is that they are elegant: they are mostly
coordinate-free, and all the different integrals studied in calculus have been uni-
fied to the Lebesgue integral by employing different measures. In turn, this means
that the nice properties and convergence theorems we have proven all carry over to
integrals on manifolds.

For example, everybody “knows” that on a sphere, any circular arc C has “mea-
sure zero”, and so may be ignored when integrating over the sphere. To prove
this rigorously using our definitions, we only have to remark that ν(C) = 0, since
λ(α−1(C)) = 0 for some coordinate chart α for the sphere.

7.4 Stieltjes integrals

The definition of the Stieltjes integrals and measures is best motivated by probability
theory. Suppose we have a R-valued random variable Z with distribution µ — that
is, for every Borel set B ⊆ R,

P{Z ∈ B} = µ(B) .

Then we can form the the cumulative probability function for the measure µ:

F(z) = P{Z ≤ z} = µ(−∞, z] .

The numerical function F is a useful summary of the much more complicated set
function µ that can be readily used for computation. (For example, the cumulative
probability function for the Gaussian distribution is tabulated in almost all statistics
textbooks and widely implemented in computer spreadsheets and statistical soft-
ware.)

It is clear that F determines µ on all Borel sets on R: we have

µ(a, b] = µ
(
(−∞, b] \ (−∞, a]

)
= F(b)− F(a) ,

and the intervals (a, b] generate B(R).
The function F satisfies two key properties:

À F is increasing, for F(b)− F(a) = µ(a, b] ≥ 0 whenever a ≤ b.

Á Since F is increasing, it always has only a countable number of discontinuities,
and these discontinuities must all be jump discontinuities. At these jumps, F is
right-continuous, for

F(b)− F(a) = µ(a, b] = lim
x↘b

µ(a, x] = lim
x↘b

F(x)− F(a) .

(F has a jump at b exactly when µ has a point mass at b: µ[b, b] 6= 0.)
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We might ask: is it possible to carry out this procedure in reverse? That is, given
an increasing function F, can we find a measure µ on B(R) that assigns, to any interval
(a, b], a “length” of F(b)− F(a)? This section will show that it is possible.

7.4.1 DEFINITION (CUMULATIVE DISTRIBUTION FUNCTION)
Let µ be a positive measure on B(R) that is finite on all bounded subsets of R. A
cumulative distribution function for µ is any function F : R→ R such that:

F(b)− F(a) = µ(a, b] , a ≤ b .

As demonstrated above, such F is always increasing and right-continuous.

7.4.2 REMARK. If µ is a finite measure, then we may take F(z) = µ(−∞, z] as before.
Otherwise, we may use

F(z) =

{
µ(c, z] , z ≥ c
−µ(z, c] , z ≤ c

for any finite centre c ∈ R. Clearly, the particular choice of c is inconsequential and
only changes F by an additive constant.

7.4.3 THEOREM

A function F : R→ R that is increasing and right-continuous is a cumulative distri-
bution function for a unique positive measure µ on B(R).

The technique for constructing the measure µ is not much different from that for
Lebesgue measure on R, which is not surprising, since the cumulative distribution
function F(x) = x corresponds exactly to Lebesgue measure.

Definition of pre-measure. We will need to deal with unbounded intervals as well,
so extend F with

F(−∞) = lim
z→−∞

F(z) = inf
z∈R

F(z) , F(+∞) = lim
z→+∞

F(z) = sup
z∈R

F(z) .

These limits may be −∞ and +∞ respectively.

Define µ(a, b] = F(b)− F(a) for a, b ∈ R and a < b. We extend µ in the obvious
way to the algebra A of disjoint unions of intervals of the form (a, b] ⊆ R

(Theorem 5.4.3).

It is straightforward to verify the well-definedness and finite additivity of µ
on A by arguments similar to those of section 5.4.

Countable additivity. Countable additivity of µ on A requires the typical approxi-
mation via finite additivity. It suffices, from Remark 5.1.7, to prove that µ(I) ≤
∑∞

n=1 µ(Jn) if the sets Jn ∈ A cover I ∈ A.
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We first assume that I = (a, b] is a simple bounded interval. And we may as
well assume, without loss of generality, that Jn = (an, bn] are simple bounded
intervals.

Since F is right-continuous, for every ε > 0, there exists δ > 0 such that

0 ≤ F(b)− F(a) < F(b)− F(a + δ) + ε .

Also there exists δn > 0 such that

0 ≤ F(bn + δn)− F(an) < F(bn)− F(an) +
ε

2n .

There exists a finite set n1, . . . , nk such that

(a + δ, b] ⊆
k⋃

i=1

(ani , bni + δni ] ,

since the open sets (an, bn + δn) cover the compact set [a + δ, b]. Taking µ of
both sides, we find

F(b)− F(a + δ) ≤
k

∑
i=1

F(bni + δni)− F(ani) ≤
∞

∑
n=1

F(bn + δn)− F(an) ,

F(b)− F(a) ≤ 2ε +
∞

∑
n=1

F(bn)− F(an) ,

and we take ε↘ 0.

If the bounds on the interval I are infinite, then it suffices to apply the bounded
case above and take the limits a→ −∞, b→ +∞ or both. Finally, if I ∈ A is a
disjoint union of simple intervals I1, . . . , Ik, then

µ(I) =
k

∑
m=1

µ(Im) ≤
k

∑
m=1

∞

∑
n=1

µ(Jn ∩ Im) =
∞

∑
n=1

k

∑
m=1

µ(Jn ∩ Im) =
∞

∑
n=1

µ(Jn) ,

since {Jn ∩ Im}n cover each interval Im.

Carathéodory’s theorem (Theorem 5.2.2) then yields an extension of µ to B(R);
it is unique as µ is σ-finite.

The measure µ is called the Lebesgue-Stieltjes measure induced from F, while
an integral with respect to µ, denoted variously:∫

g dµ =
∫

g dF =
∫

g(x) dF(x) ,

is called a Lebesgue-Stieltjes integral. The Lebesgue-Stieltjes integral is the gener-
alization of the Riemann-Stieltjes integral that is the limits of sums of the form:

∑
i

g(ξi) ·
(

F(xi)− F(xi−1)
)

, xi−1 < ξi ≤ xi ,

first introduced by Thomas Stieltjes in 1894.
Further developments about Lebesgue-Stieltjes integrals may be anticipated if

we observe that:
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À If F is continuously differentiable, then dF really means what the notation sug-
gests: dF = F′dx and F(b)− F(a) =

∫ b
a dF.

Is there an analogous formula that applies even when F is not smooth?

Á In the formula F(b)− F(a) =
∫ b

a F′(x) dx obviously there needs no restriction
that the anti-derivative F has to be increasing.

The anti-derivative F is decreasing whenever its slope F′ is negative. Indeed,
we integrate over a domain where F′ is negative, the area between the graph
of F′ and the horizontal axis is counted negatively, and the cumulative area
function is decreasing.

Perhaps we can articulate a general situation where certain areas are counted
negatively, and construct “measures with sign” corresponding to cumulative
distribution functions F that are not necessarily increasing.

In the next few chapters, we will investigate the answers to these questions.

7.5 Exercises

7.1 (Necessary and sufficient conditions for Riemann integrability) Let A be a bounded
rectangle in Rm. A bounded function f : A → R is Riemann-integrable if and only
if f is continuous almost everywhere.

This result is usually found with elementary proofs in beginning analysis books,
but the “advanced” proof, using the language of measure theory, may be easier to
grasp. Use these facts:

À Consider these quantities, the continuous analogue of lim inf and lim sup for
discrete sequences:

f (x) = lim
δ↘0

inf
‖y−x‖≤δ

f (y) , f (x) = lim
δ↘0

sup
‖y−x‖≤δ

f (y) .

We have f (x) = f (x) if and only if f is continuous at x.

Á If the lower and upper step approximations ln and un for f are determined
by finer and finer partitions with dyadic mesh sizes proportional to 2−n, then
L = sup

n
ln = f , and U = inf

n
un = f almost everywhere.

7.2 Is a Riemann-integrable function necessarily Borel-measurable?

7.3 Let µ be a finite measure on a metric space X. A bounded function f : X → R is
µ-Riemann-integrable if for every ε > 0, there exist continuous functions l ≤ f and
u ≥ f such that

∫
X(u− l) dµ < ε.

It is possible to generalize the Riemann integral to other



7. Integration over Rn: Exercises 78

7.4 (Volume of parallelopiped) Show directly, without using Lemma 7.2.1, that the vol-
ume of

P = {a + t1v1 + · · · tnvn | 0 ≤ ti ≤ 1} , for a, v1, . . . , vn ∈ Rn ,

is |det(v1, . . . , vn)|.
7.5 (Alternate proof of differential change-of-variables) Lemma 7.2.1 can be proven by

directly estimating the volume λ(g(Q)) for small cubes Q, and then appealing to
the Radon-Nikodým theorem and related results from the next chapter.

Assume that g : U → V is a continuous differentiable mapping between open
sets U, V of Rn, with non-singular derivative. Define the measure µ = λ ◦ g.

À If E ⊆ U has measure zero, then so does g(E). Thus the Radon-Nikodým
derivative dµ

dλ exists.

This part is tricky. Using completeness of the Lebesgue measure, it can be
proven in a few lines.

A more constructive proof is also possible, by bounding the size of g(Q) for
small cubes Q. You will need σ-compactness to be able to bound the derivative
Dg.

Á Let h > 0, and let

Qh = {x ∈ Rn | ‖x− a‖ ≤ h/2} , ‖u‖ = max
j=1,...,n

|uj|

be the cube with centre a and sides of length h. Show that as h→ 0,

µ(Qh) ≤ |det Dg(a)|(h + o(h)
)n .

Â Hence dµ
dλ ≤ |det Dg|.

Ã Analogously dλ
dµ ≤ |det Dg|−1, and so conclude with dµ

dλ = |det Dg|.

The constructive proof of part À should suggest generalizations of the results to
functions g that are merely locally Lipschitz. The interested reader may wish to pur-
sue this further; the line of argument in this exercise is suggested in [Guzman].

7.6 (Special case of Sard’s theorem) Let g : X → Y be a continuously differentiable func-
tion on an open set U ⊆ Rn, and

A = {x ∈ X | det Dg(x) = 0}
be the set of critical points of g. Then g(A) has Lebesgue-measure zero.

We can prove this theorem using similar techniques to to that of the previous
exercise: estimating volumes of the images of cubes. However, this time around
we require a more careful argument, as the function g may not be bijective, and the
domain A may be large in volume.
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À It suffices to show that λ(g(Q ∩ A)) = 0 for any closed cube Q ⊆ X, not
necessarily small. And then we shall show λ(g(Q ∩ A)) = 0 by establishing
λ(g(Q ∩ A)) < ε for arbitrary ε > 0.

Á Exploit the uniform continuity of Dg on a compact subset to show,

g(y)− g(x) = Dg(x)(y− x) + o(‖y− x‖) ,

as ‖y− x‖ → 0, uniformly for x, y ∈ Q.

More precisely, for every ε > 0, there exists δ > 0, such that:

x, y ∈ Q , ‖y− x‖ ≤ δ =⇒ ‖g(y)− g(x)−Dg(x)(y− x)‖ ≤ ε‖y− x‖ .

Â Divide the cube Q into small sub-cubes whose sides are shorter than δ. If an in-
dividual sub-cube S intersects A, then g(S) is bounded by a box whose height
along some axis is proportional to εδ. Consequently, there exists a constant
C > 0, depending only on the dimension n, such that

λ(g(S)) ≤ Cεδn .

Ã Complete the proof.

7.7 (Extended version of change-of-variables) Prove the following intuitively-obvious
generalization of Lemma 7.2.1.

Let g : X → Y be a continuously differentiable function on an open set X ⊆ Rn,
not necessarily a diffeomorphism. Then for any measurable E ⊆ X,∫

E
|det Dg(x)| dx =

∫
g(E)

#g|−1
E (y) dy ,

where #g|−1
E (y) counts the number of pre-images of y in E.

(The set {x ∈ X | det Dg(x) = 0} can be neglected, according to Sard’s theorem
from the previous exercise.)

7.8 (Yet another proof of differential change-of-variables) Here is a geometrical proof
of Lemma 7.2.1, combining the ideas found in Exercise 7.5 and Exercise 7.6, but
without recourse to the Radon-Nikodým theorem.

Let g : X → Y be a diffeomorphism of open sets in Rn.

À Given ε > 0, taking S to be a sufficiently small cube with x ∈ S as its centre,
we have

λ(g(S)) ≤ (1 + ε)|det Dg(x)| λ(S) .

Á For a cube Q of any size,

λ(g(Q)) ≤
∫

Q
|det Dg| dλ .
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Â The previous inequality continues to hold if Q is replaced by any measurable
set E.

Ã Conclude that λ(g(E)) =
∫

E|det Dg| dλ for all measurable E ⊆ X.

This line of argument comes from [Schwartz], which also has a brief survey of some
other proofs of the change-of-variables formula.

7.9 (Change-of-variables for Lebesgue-measurable sets) Extend Lemma 7.2.1 to cover
the case when the set A is only Lebesgue-measurable.

7.10 (Lower-dimensional objects have measure zero) Any k-dimensional differentiable
manifold in Rn, for n > k, always has Lebesgue-measure zero in Rn.

7.11 (Pappus’s or Guldin’s theorem for volumes) The solid of revolution in R3, gener-
ated by rotating a plane figure R in the x+-z plane, about the z axis, has volume
V = ad, where a is the area of R, and d is the distance travelled by the centroid of R
under the rotation.

The centroid of a measurable set E ⊆ Rn, with respect to a (signed) measure ν,
is defined as:

~m =
1

ν(E)

∫
~x∈E

~x dν ,

provided that ν(E) 6= 0, ∞.

7.12 (Pappus’s or Guldin’s theorem for surfaces) The surface of revolution in R3, gen-
erated rotating a curve γ in the x+-z plane about the z axis, has surface area A = ld,
where l is the arc-length of γ, and d is the distance travelled by the centroid of γ
under the rotation.

7.13 (Gaussian integral) Compute explicitly∫
Rn

e−a‖x‖2
dx , a > 0 , ‖x‖2 =

n

∑
i=1

x2
i .

The calculation in chapter 1 is the special case a = 1
2 , n = 1.

7.14 (Expectation of Gaussian integral) Let X be a standard Gaussian random variable;
that is, it has the distribution

P(X ≤ z) = Φ(z) =
1√
2π

∫ z

−∞
e−

1
2 ζ2

dζ .

Compute the expectation E[Φ(aX + b)] for any constants a, b ∈ R.
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7.15 (Relation between surface area and volume of ball) Regard Sn−1, the (n− 1)-dimensional
unit sphere, as a (n− 1)-dimensional differentiable manifold in Rn. Let E be mea-
surable in Sn−1. Let

ER = {rx | x ∈ E, 0 ≤ r ≤ R} ⊆ Rn ,

be the cone formed from the spherical patch E with radius R. Using the computa-
tional definitions in section 7.3, show that the Lebesgue measure of ER is

λ(ER) =
∫ R

0
rn−1σ(E) dr ,

where σ is the surface area measure on Sn−1.
What is the intuitive meaning behind this equation?

7.16 (Polar coordinates) If x ∈ Rn \ {0}, the generalized polar coordinates of x are:

r = ‖x‖ ∈ (0, ∞), r̂ =
x
‖x‖ ∈ Sn−1 .

(The Euclidean norm is used.)
Let φ : Rn \ {0} → (0, ∞) × Sn−1 be this polar coordinate mapping. Show, for

any Borel-measurable E ⊆ Rn, that

λ(φ−1(E)) = (ρ⊗ σ)(E) , dρ = rn−1 dr

where λ is the usual Lebesgue measure on Rn, and σ is the surface area measure on
Sn−1.

Conclude that for any measurable function f : Rn → R, non-negative or inte-
grable, ∫

Rn
f (x) dx =

∫ ∞

0

∫
r̂∈Sn−1

f (rr̂) rn−1 dσ dr .

7.17 (Formula for surface area and volume of ball) Calculate the surface area of the unit
sphare and the volume of the unit ball in Rn, by integrating e−‖x‖2

over x ∈ Rn with
generalized polar coordinates. (If you get stuck, look at the next exercise for a hint.)

7.18 (Evaluating polynomials over a sphere) Amazingly, the trick used in the previous
exercise can be extended to integrate any polynomial over Sn−1. It gives the neat
formula:∫

x∈Sn−1
|x1|α1 · · · |xn|αn dσ =

2 Γ
( α1+1

2

) · · · Γ( αn+1
2

)
Γ
( α1+···+αn+n

2

) , α1, . . . , αn ≥ 0 .

The Γ function was defined in Example 3.5.5.
A related problem is to evaluate, without relying on anti-derivatives,∫ π/2

0
cosk θ sinl θ dθ .
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7.19 (Multi-variate cumulative distribution functions) We can generalize the notion of
the Lebesgue-Stieltjes measure and cumulative distribution functions to the setting
of Rn. It is important in the field of probability and statistics to describe the distri-
bution of a finite set of random variables that may not be independent.

Define the operator ∆i(a) acting on functions of n variables:

∆j(a)F(x1, . . . , xn) =

F(x1, . . . , xi−1, xi, xi+1, . . . , xn)− F(x1, . . . , xi−1, a, xi+1, . . . , xn) ,

for 1 ≤ i ≤ n and a ∈ R. (In words, take a finite difference on the ith variable but
leave the other variables fixed.)

Suppose µ is a finite measure on Rn. (We stick to finite measures for simplicity.)
Its cumulative distribution function is:

F(x1, . . . , xn) = µ
(
(−∞, x1]× · · · × (−∞, xn]

)
.

Then
µ
(
(a1, b1]× · · · × (an, bn]

)
= ∆1(a1) · · ·∆n(an)F(b1, . . . , bn) .

(What is the geometric meaning of this equation? Note that the operators ∆1(a1),
. . . , ∆n(an) commute.)

It follows that the necessary conditions for a function F : Rn → R to be a cumu-
lative distribution function for a finite measure µ on B(Rn) are:

À F must be increasing in each variable when the other variables are held fixed.

Á F must be right-continuous in each variable.

Â If any of the variables tend to −∞, then F tends to 0.

Ã ∆1(a1) · · ·∆n(an)F(b1, . . . , bn) ≥ 0 for any choice of real numbers a1 ≤ b1, . . . ,
an ≤ bn.

Show that these conditions are also sufficient for constructing the finite measure
µ corresponding to the multi-variate cumulative distribution function F.

7.20 (Riemann-Stieltjes sums) What are the conditions for the Riemann-Stieltjes sums to
converge to the Lebesgue-Stieltjes integral?

7.21 (Mapping of random variables to uniform distribution) It is often required to sim-
ulate random samples from some specified probability distribution. However, most
computer algorithms only generate uniformly distributed (pseudo-)random sam-
ples. To get other probability distributions, we can do a mapping to and from the
uniform distribution on [0, 1], as follows.

Let X be a R-valued random variable, and F : R→ [0, 1] be its cumulative prob-
ability distribution function. Then U = F(X) has the uniform distribution.
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If F is invertible, then conversely, given any U uniformly distributed on [0, 1],
the random variable X = F−1(U) has the probability distribution determined by F.
If F is not invertible, the same procedure works provided we define:

F−1(u) = inf{x ∈ R | F(x) ≥ u} , u ∈ (0, 1) .

7.22 (Constructing independent random variables) For any countable set of probability
measures µn : B(R) → [0, 1], there exists a probability space (Ω,F , P) having inde-
pendent random variables Xn : Ω→ R whose individual probability laws are given
by µn respectively.

Hint: Exercise 7.21 and Exercise 5.7.



Chapter 8

Decomposition of measures

In this chapter, we discuss ways to decompose a given measure in terms of some
other measures. These decompositions are used a fair amount in probability theory,
and also in chapter 10.

8.1 Signed measures

A signed measure is nothing more than measure that is not restricted to take non-
negative values. We have already seen a need for signed measures as we developed
Stieltjes integrals in section 7.4. Mathematically, considering signed measures is use-
ful as they form a vector space closed under addition and scalar multiplication. In
terms of physical applications, we can, for example, model an electric charge distri-
bution with signed measures, just as we can model a mass distribution with ordi-
nary positive measures.

8.1.1 DEFINITION (SIGNED MEASURE)
A signed measure on a measurable space (X,M) is a function ν : M→ R satisfying

À ν(∅) = 0.

Á Countable additivity: For any sequence of mutually disjoint sets En ∈ M,

ν

( ∞⋃
n=1

En

)
=

∞

∑
n=1

ν(En) .

Since the set union is commutative, the infinite sum on the right must con-
verge to the same value no matter how the summands are rearranged. In
other words, we must have absolute convergence.

We disallow infinite values for a signed measure so that no ambiguity can arise
in adding or subtracting values. Infinite values for signed measures are not needed
in most applications anyway.

84
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8.1.2 EXAMPLE (SIGNED MEASURE FROM DENSITIES). If µ is a positive measure, and g is
integrable with respect to µ, then

ν(E) =
∫

E
g dµ =

∫
E

g+ dµ−
∫

E
g− dµ

is a signed measure. This generalizes Theorem 3.3.1 which restricts g to be non-
negative.

8.1.3 EXAMPLE (DIFFERENCE OF MEASURES). If µ1 and µ2 are two positive measures on
a measurable space, then their difference ν = µ1 − µ2 is a signed measure.

Despite the seeming generality of the definition, all signed measures turn out
to be instances of these two examples: every signed measure is a difference of two
positive measures. The whole purpose of this section is to reduce the study of signed
measures to the study of the positive measures that we are familiar with.

The idea behind the canonical decomposition of signed measures is to find parts
of the measurable space X where the signed measure takes the same sign through-
out, positive or negative. This motivates the following definition.

8.1.4 DEFINITION (NULL, POSITIVE, NEGATIVE SETS)
Let ν be a signed measure on a measurable space X. A measurable set E ⊆ X is:

+ null for µ if µ(F) = 0 for all F ⊆ E measurable;

+ positive for µ if µ(F) ≥ 0 for all F ⊆ E measurable;

+ negative for µ if µ(F) ≤ 0 for all F ⊆ E measurable.

8.1.5 THEOREM (HAHN DECOMPOSITION)
If ν is a signed measure on X, then X can be partitioned into two measurable sets,
one of which is positive for ν and the other is negative for ν.

The partition is unique up to ν-null sets.

Proof Let α = sup{ν(E) : E ⊆ X measurable}. This quantity is finite according to
Lemma 8.1.6 immediately following this theorem.

Take measurable sets En such that α− ν(En) ≤ 2−n. We claim that this set,

P = lim sup
n

En , that is, P =
⋂
n

Fn , where Fn =
⋃
k≥n

Ek ,

can be taken as a positive set for ν. We will make some estimates to show ν(P) =
α; then it follows immediately that P cannot contain any sets of strictly negative
measure, and that any set not contained in P cannot have strictly positive measure.
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Since the sets Fn are decreasing as n → ∞, we have ν(P) = limn ν(Fn). (The
proof is the same as for positive measures.) So we estimate ν(Fn):

ν(Fn) = ν(En) +
∞

∑
k=n

ν(Ek+1 \ Ek) (disjointify the union of Ek)

= ν(En) +
∞

∑
k=n

[
ν(Ek+1)− ν(Ek+1 ∩ Ek)

]
≥ α− 1

2n −
∞

∑
k=n

1
2k+1 → α , as n→ ∞.

For the last inequality, we use the fact that ν(Ek+1 ∩ Ek) ≤ α ≤ ν(Ek+1) + 2−(k+1).
But this means ν(P) ≥ α (and hence = α).
We now show uniqueness. Suppose X has two partitions, {P, N} and {P′, N′},

where P, P′ are positive for ν, and N, N′ are negative for ν. Let E be any measurable
set; then ν

(
E ∩ P ∩ (X \ P′)

)
= ν(E ∩ P ∩ N′) is zero since it is both ≤ 0 and ≥ 0.

Similarly, ν(E ∩ N ∩ P′) is zero. Thus the difference between P versus P′, and the
difference between N versus N′, are ν-null sets. �

8.1.6 LEMMA (FINITENESS OF TOTAL VARIATION)
For any signed measure ν on a measurable space X, the set of real numbers

{ν(E) | E ⊆ X measurable}
is bounded above.

This lemma is really a manifestation of the fact that the total variation |ν| (to be
defined shortly) is never infinite; it is certainly more easily remembered this way.

Proof Suppose not. We will construct a sequence of disjoint measurable sets Ei, such
that ∑i ν(Ei) is conditionally (but not absolutely) convergent, leading to a contradic-
tion with countable additivity of ν.

Take any measurable set E ⊆ X such that ν(E) ≥ |ν(X)|+ 1. Then both quanti-
ties |ν(E)| and |ν(X \ E)| are at least one:

|ν(X \ E)| = |ν(X)− ν(E)| ≥ |ν(E)| − |ν(X)| ≥ ν(E)− |ν(X)| ≥ 1
|ν(E)| ≥ ν(E) ≥ |ν(X)|+ 1 ≥ 1 .

By hypothesis, one of E or X \ E has subsets of arbitrarily large positive measure
— say X \ E. Set E1 = E, and |ν(E1)| > 1.

Repeat the above argument with X replaced by E1, to obtain a measurable set
E2 ⊆ X \ E1 (so E2 is disjoint from E1) such that |ν(E2)| > 1. Repeat again and again.
Continuing this way, we obtain a sequence of disjoint measurable sets E1, E2, . . .
such that |ν(Ei)| > 1. �
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Not only can we partition the space X into its positive and negative part, we also
aim to partition the signed measure itself into two or more pieces that, in some way,
“disjoint”, “independent” or “perpendicular” from one another. We formalize this
heuristic in the next definition.

8.1.7 DEFINITION (MUTUALLY SINGULAR MEASURES)
Two signed measures µ and ν are (mutually) singular, denoted by µ ⊥ ν, if there is
a partition {E, F = X \ E} of X, such that:

+ µ lives on E, that is, F is null for µ (see Definition 8.1.4);

+ ν lives on F, that is, E is null for ν.

8.1.8 EXAMPLE. Counting measure on N ⊆ R, and Lebesgue measure on R are mutually
singular measures.

8.1.9 THEOREM (JORDAN DECOMPOSITION)
A signed measure ν can be uniquely written as a difference ν = ν+ − ν− of two
positive measures that are singular to each other.

Proof Let P be a positive set for ν from the Hahn decomposition, and N = X \ P be
the negative set. For all measurable sets E ⊆ X, set:

ν+(E) = ν(E ∩ P) , ν− = −ν(E ∩ N) .

It is plainly evident that ν+ and ν− are positive measures, ν+ ⊥ ν−, and ν = ν+− ν−.
Establishing uniqueness is straightforward. Suppose ν is a difference ν = µ+−µ−

of two other positive measures with µ+ ⊥ µ−. By definition there is some set P′ that
µ+ lives on, and µ− lives on the complement N′. Then for any measurable E,

ν(E ∩ P′) = µ+(E ∩ P′) , ν(E ∩ N′) = −µ−(E ∩ N′) ,

and this means P′ is positive for ν and N′ is negative for ν. But the Hahn decompo-
sition is unique, so P, P′ and N, N′ differ on ν-null sets. Thus ν+(E) = ν(E ∩ P) =
ν(E ∩ P′) = µ+(E ∩ P′) = µ+(E), so ν+ = µ+. And likewise ν− = µ−. �

8.1.10 DEFINITION (VARIATIONS OF SIGNED MEASURE)
For any signed measure ν, the positive measures ν+ and ν− in its Jordan decomposi-
tion (Theorem 8.1.9), are called, respectively, the positive variation and the negative
variation of ν.

The positive measure |ν| = ν+ + ν− is called the (total) variation of ν.
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8.1.11 REMARK (INTRINSIC DEFINITION OF VARIATIONS OF SIGNED MEASURE). “Intrinsic”
definitions of ν+, ν− and |ν| that do not explicitly depend on Theorem 8.1.9 can be
given:

ν+(E) = sup
{

ν(F) | F ⊆ E measurable
}

.

−ν−(E) = inf
{

ν(F) | F ⊆ E measurable
}

.

|ν|(E) = sup
{ n

∑
i=1
|ν(Ei)| | the measurable sets E1, . . . , En partition E

}
.

(In the definition of |ν|, countable partitions can be used in place of finite partitions.)

8.1.12 DEFINITION (INTEGRAL WITH RESPECT TO SIGNED MEASURE)
Let ν be a signed measure on X. A function f : X → R is integrable with respect to
ν if f is measurable and | f | is integrable with respect to |ν|. The integral of such f
with respect to ν is defined by:∫

X
f dν =

∫
X

f dν+ −
∫

X
f dν− .

8.2 Radon-Nikodým decomposition

Recall our trusty example, that for any function g integrable with respect to a posi-
tive measure µ,

ν(E) =
∫

E
g dµ

generates a new signed measure ν. This ν has the notable property described in the
following definition.

8.2.1 DEFINITION (ABSOLUTE CONTINUITY OF MEASURES)
A positive or signed measure ν on some measurable space is absolutely continuous
with respect to a positive measure µ on the same measurable space, if

+ Any measurable set E having µ-measure zero also has ν-measure zero.

ν is also said to be dominated by µ, symbolically indicated by ν� µ.

In this section, we show the converse: if ν is dominated by µ, then ν must be
generated by integration of some density function for µ.

8.2.2 REMARK. Absolute continuity is the polar opposite of mutual singularity (Defini-
tion 8.1.7). If ν� µ and ν ⊥ µ at the same time, then ν must be identically zero.

8.2.3 THEOREM (POSITIVE FINITE CASE OF RADON-NIKODÝM DECOMPOSITION)
If ν and µ be positive finite measures on a measurable space X, then ν may be de-
composed as a sum ν = νa + νs of two positive measures, with νa � µ and νs ⊥ µ.

Moreover, νa has a density function with respect to µ.
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Proof We present this slick argument, using Hilbert spaces, due to John von Neu-
mann. The argument can be motivated by the fact that, Hilbert spaces have a general
theory of orthogonal decompositions, that can be readily applied, if we can manage
to find an inner product describing the desired orthogonality relation.

Let λ = ν + µ be the “master” measure. We can consider L2(λ), which can be
made into a real Hilbert space with the inner product 〈 f , g〉 =

∫
f g dλ. The map

f 7→ ∫
f dν is a bounded linear functional on L2(λ), so by the Riesz representation

theorem, there exists a g ∈ L2(λ) such that∫
X

f dν = 〈 f , g〉 =
∫

X
f g dλ .

Rearranging terms we have∫
X

f · (1− g) dν =
∫

X
f g dµ . `

From this we can see that 0 ≤ g ≤ 1 must hold λ-almost everywhere. For if we take
f = I({g ≥ 1}), the left side is ≤ 0 while the right side is ≥ 0. Similarly, we have
the reverse situation if we take f = I({g ≤ 0}).

For simplicity, we modify g so that 0 ≤ g ≤ 1 everywhere. For measurable E, let

νa(E) = ν(E ∩ {g < 1}), νs(E) = ν(E ∩ {g = 1}) .

Obviously ν = νa + νs. By taking f = I(E ∩ {g < 1})/(1− g) in equation `, we
have ∫

E∩{g<1}
g

1− g
dµ =

∫
E∩{g<1}

1
1− g

· (1− g) dν = νa(E) .

So νa � µ, and νa has density function I({g < 1}) g/(1− g).
Moreover, if we take f = I(E ∩ {g = 1}), from equation ` we get

0 =
∫

E∩{g=1}
(1− g) dν =

∫
E∩{g=1}

g dµ = µ(E ∩ {g = 1}) ,

so µ is null on {g = 1}. And clearly νs is null on the complement of {g = 1}.
Therefore νs ⊥ µ. �

The proof Theorem 8.2.3 contains the real meat of this section; the rest is mostly
book-keeping:

8.2.4 THEOREM (RADON-NIKODÝM DECOMPOSITION)
Let µ be a σ-finite measure (Definition 5.2.4) on a measurable space X. Any other
signed measure or σ-finite positive measure ν on X can be uniquely decomposed as
ν = νa + νs, where νa � µ and νs ⊥ µ. Moreover, νa has a density function with
respect to µ.

Proof
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À We dispose of the σ-finite case first, assuming that ν is positive. Let {Xn} be a
countable partition of X such that νn(E) = ν(E ∩ Xn) and µn(E) = µ(E ∩ Xn)
are finite measures. Apply Theorem 8.2.3 to νn and µn to obtain:

νn = νn
a + νn

s , νn
a � µn , νn

s ⊥ µn .

ν = νa + νs , νa =
∞

∑
n=1

νn
a , νs =

∞

∑
n=1

νn
s .

νa � µ holds, because µ(E) = 0 implies µn(E) = 0 for all n, and hence νn
a (E) =

0 and νa(E) = 0.

Let µn and νn
s live on disjoint sets An and Bn respectively. We may assume that

An, Bn ⊆ Xn. Then µ lives on
⋃

n An, and νs lives on
⋃

n Bn; these two unions
are disjoint, so νs ⊥ µ.

Á Now let ν be any signed measure. Split ν into its positive and negative varia-
tions (Definition 8.1.10) and apply the positive version of this theorem to each
separately:

ν+ = ν+
a + ν+

s , ν+
a � µ , ν+

s ⊥ µ .
ν− = ν−a + ν−s , ν−a � µ , ν−s ⊥ µ .

ν = ν+ − ν− = (ν+
a − ν−a )︸ ︷︷ ︸

νa

+ (ν+
s − ν−s )︸ ︷︷ ︸

νs

.

That νa � µ is clear. Suppose ν±s lives on B±, and µ lives on its complement
A±. Thus νs lives on B+∪ B−, and µ lives on A+∩A− too. But X \ (B+∪ B−) =
A+ ∩ A−; therefore νs ⊥ µ.

Â In all cases, νa has a density with respect to µ, because the density of a sum or
difference of measures is just the sum or difference of the individual densities.

Ã Finally, we show uniqueness. If ν has two decompositions νa + νs and ν′a + ν′s,
then νa − ν′a = ν′s − νs. The left-hand side of this equation is � µ, while the
right-hand side is ⊥ µ. Then both sides must be identically zero (Remark
8.2.2). (If ν can take infinite values, apply this argument after restricting the
measures to each Xn as above.) �

8.2.5 EXAMPLE (DISCRETE MEASURES). An atomic measure or discrete measure is one
takes takes non-zero values only on a discrete set of points. (If it is finite or σ-finite,
that discrete set must be countable.)

Any atomic measure ν is mutually singular to the Lebesgue measure λ, so the
Radon-Nikodým decomposition of σ = ν + λ with respect to λ will be given by
σa = λ and σs = ν.
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8.2.6 EXAMPLE (SINGULARLY CONTINUOUS MEASURES). There are also measures singu-
lar to Lebesgue measure yet are not atomic. A surface measure (section 7.3) on some
set M ⊆ R2 is an obvious example of such singularly continuous measures. On R,
the uniform measure on the Cantor set is singularly continuous.

8.3 Exercises

8.1 (Properties of variations of signed measure) Show the following basic properties for
a signed measure ν:

À ν+ = 1
2 (|ν|+ ν).

Á ν− = 1
2 (|ν| − ν).

Â |ν(E)| ≤ |ν|(E).

Ã |ν + µ| ≤ |ν|+ |µ|. (µ is another signed measure.)

8.2 (Intrinsic definitions of variations of signed measure) Demonstrate the equivalence
of the intrinsic definitions (Remark 8.1.11) of the positive, negative, and total varia-
tions of a signed measure with the definitions in terms of the Jordan decomposition.

Also try showing directly that the formulas for the intrinsic definitions do yield
positive measures.

8.3 (Variation of signed measure expressed with densities) For any signed measure ν
and σ-finite positive measure µ,

dν±

dµ
=
(

dν

dµ

)±
,

d|ν|
dµ

=
∣∣∣∣ dν

dµ

∣∣∣∣ ;

also
ν� |ν| and

dν

d|ν| = ±1 almost everywhere.

8.4 (Chain rule for Radon-Nikodým derivative) Assume σ-finiteness.

À If ν� µ� λ, then λ-almost everywhere

dν

dλ
=

dν

dµ

dµ

dλ
.

Á If ν� µ� ν (the measures ν and µ are said to be equivalent), then

dν

dµ
=
(

dµ

dν

)−1

.
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8.5 (Integration with a signed measure) Integration with respect to a signed measure ν
can also be defined directly instead of reducing it to integrals with respect to ν+ and
ν−.

Follow these steps.

À Define
∫

ϕ dν for simple functions ϕ : X → R by simple summation, and prove
its basic properties.

Á Show: ∣∣∣∫ ϕ dν
∣∣∣ ≤ ∫ |ϕ| d|ν| .

Â We say that a measurable function f : X → R is integrable with respect to a
signed measure ν if

∫ | f | d|ν| < ∞.

A function f : X → R is integrable with respect to ν if and only if there exist
simple functions ϕn converging to f in L1(|ν|). For any such sequence ϕn
converging to f , define: ∫

f dν = lim
n→∞

∫
ϕn dν .

Show the limit is well-defined.

Ã Show this version of the dominated convergence theorem holds for the new
integral:

If a sequence of measurable functions fn : X → R has limit f , and | fn| ≤ g for
some g ∈ L1(|ν|), then

lim
n→∞

∫
fn dν =

∫
f dν .

8.6 (σ-finite is necessary for Radon-Nikodým decomposition) Find counterexamples to
the conclusion of the Radon-Nikodým theorem if one of the measures is not σ-finite.



Chapter 9

Approximation of Borel sets and
functions

9.1 Regularity of Borel measures

As we have said, we must now approximate arbitrary Borel sets B ∈ B(Rn) by
compact sets. (We will also need approximation by open sets.) It turns out that
this part of the proof is purely topological, and generalizes to other metric spaces X
besides Rn. Henceforth we consider the more general case.

Let d denote the metric for the metric space X.

9.1.1 THEOREM

Let (X, B(X), µ) be a finite measure space, and let B ∈ B(X). For every ε > 0, there
exists a closed set V and an open set U such that V ⊆ B ⊆ U and µ(U \V) < ε.

Proof Let M be the set of all B ∈ B(X) for which the statement is true. We show
thatM is a sigma algebra containing all the open sets in X.

À Let B ∈ M with V and U as above. Then Vc open ⊇ Bc ⊇ Uc closed, and
µ(Vc)− µ(Uc) < ε. This shows Bc ∈ M.

Á Let Bn ∈ M. Choose Vn and Un for each Bn such that µ(Un \ Vn) < ε/2n. Let
U =

⋃
n Un which is open, and V =

⋃
n Vn, so that V ⊆ ⋃n Bn ⊆ U.

Of course V is not necessarily closed, but WN =
⋃N

n=1 Vn are, and these WN
increase to V. Hence µ(V \WN) → 0 as N → ∞, meaning that for large
enough N, µ(V \WN) < ε.

Next, we have

U \WN = (U \V) ] (V \WN)

⊆ ⋃
n
(Un \Vn) ∪ (V \WN) ,

µ(U \WN) = µ(U \V) + µ(V \WN)

≤∑n(Un \Vn) + µ(V \WN) < ε + ε . �

93
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This shows that
⋃

n Bn ∈ M.

Â Let B be open, and A = Bc. Also let d(x, A) = infy∈A d(x, y) be the distance
from x ∈ X to A. Set Dn = {x ∈ X : d(x, A) ≥ 1/n}. Dn is closed, because
d(·, A) is a continuous function, and [1/n, ∞] is closed.

Clearly d(x, A) ≥ 1/n > 0 implies x ∈ Ac = B, but since A is closed, the
converse is also true: for every x ∈ Ac = B, d(x, A) > 0. Obviously the Dn
are increasing, so we have just shown that they in fact increase to B. Hence
µ(B \ Dn) < ε for large enough n. Thus B ∈ M.

The case that µ is not a finite measure is taken care of, as you would expect, by
taking limits like we did for sigma-finite measures in Section 5.1. But since compact
and open sets are involved, we need stronger hypotheses:

À There exists {Kn} ↗ X, with Kn compact and µ(Kn) < ∞.

Á There exists {Xn} ↗ X, with Xn open and µ(Xn) < ∞.

It is easily seen that these properties are satisfied by X = Rn and the Lebesgue
measure λ, as well as many other “reasonable” measures µ on B(Rn). We will
discuss this more later.

We assume henceforth that X and µ have the properties just listed.

9.1.2 THEOREM

Let B ∈ B(X) with µ(B) < ∞. For every ε > 0, there exists a compact set V and an
open set U such that K ⊆ B ⊆ U and µ(U \ K) < ε.

Proof It suffices to show that µ(U \ B) < ε and µ(B \ K) < ε separately.

Existence of K. Since {B∩Kn} ↗ B, there exists some n such that µ(B)−µ(B∩Kn) <
ε/2.

For this n, define the finite measure µKn(E) = µ(E ∩ Kn), for E ∈ B(X).
By Theorem 9.1.1, there are sets V ⊆ B ⊆ U, V closed, and µKn(B \ V) ≤
µKn(U \ V) < ε/2. Since Kn is compact, it is closed. Then K = V ∩ Kn is also
closed, and hence compact, because it is contained in the compact set Kn. We
have,

µ(B \ K) = µ(B)− µ(B ∩ Kn) + µ(B ∩ Kn)− µ(K)

= µ(B)− µ(B ∩ Kn) + µKn(B)− µKn(V) <
ε

2
+

ε

2
.

Existence of U. For every n, define the finite measure µXn(E) = µ(E ∩ Xn), for
E ∈ B(X). By Theorem 9.1.1, there are sets Vn ⊆ B ⊆ Un, Un open, and
µXn(Un \ B) ≤ µXn(Un \Vn) < ε/2n.

Let U =
⋃

n Un ∩ Xn ⊇ B. We have,

µ(U \ B) ≤∑n µ(Un ∩ Xn \ B) = ∑n µXn(Un \ B) < ε . �
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9.1.3 DEFINITION

A Borel measure µ is:

+ inner regular on a set E if µ(E) = sup{µ(K) | compact K ⊆ B}.
+ outer regular on a set E if µ(E) = inf{µ(U) | open U ⊇ B}.
+ regular if it is inner regular and outer regular on all Borel sets.

9.1.4 COROLLARY

Let (X, B(X), µ) with the same properties as before. Then µ is regular.

Proof If µ(B) < ∞, then inner and outer regularity on B is immediate from Theorem
9.1.2.

Otherwise, µ(B ∩ Xn) < ∞, for every n, and so we know there are compact Kn
such that µ(B ∩ Xn) − µ(Kn ∩ Xn) < ε. But if µ(B ∩ Xn) are unbounded, then so
are µ(Kn ∩ Xn), and Kn ∩ Xn is compact. This proves the supremum is unbounded.
Obviously the infimum is also unbounded. �

9.2 C∞
0 functions are dense in Lp(Rn)

This section is devoted to the result that the space of C∞
0 functions is dense in

Lp(Rn), which was discussed at the end of Section 4.1.

9.2.1 THEOREM

Let f : Rn → R ∈ Lp(Rn), 1 ≤ p < ∞. Then for any ε > 0, there exists ψ ∈ C∞
0 such

that

‖ψ− f ‖p =
(∫

Rn
|ψ− f |p dλ

)1/p
< ε .

Our strategy for proving this theorem is straightforward. Since we already know
that the simple functions ϕ = ∑i aiχEi are dense in Lp, we should try approximating
χEi by C∞

0 functions. Since C∞
0 functions are non-zero on compact sets, it stands to

reason that we should approximate the sets Ei by compact sets Ki. If this can be
done, then it suffices to construct the C∞

0 functions on the sets Ki.
Our constructions start with this last step. You might even have seen some of

these constructions before.

9.2.2 LEMMA

Let A be a compact rectangle in Rn. Then there exists φ ∈ C∞
0 which is positive on

the interior of A and zero elsewhere.
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Proof Consider the infinitely differentiable function

f (x) =
{

e−1/x2
, x > 0

0 , x ≤ 0 .

If A = [0, 1], then φ(x) = f (x) · f (1 − x) is the desired function of C∞
0 . (Draw

pictures!)
If A = [a1, b1]× · · · × [an, bn], then we let

φA(x) = φ

(
x1 − a1

b1 − a1

)
· · · φ

(
xn − an

bn − an

)
.

�

9.2.3 LEMMA

For any δ > 0, there exists an infinitely differentiable function h : R → [0, 1] such
that h(x) = 0 for x ≤ 0 and h(x) = 1 for x ≥ δ.

Proof Take the function φ from Lemma 9.2.2 for the rectangle [0, δ], and let

h(x) =

∫ x
−∞ φ(t) dt∫ ∞
−∞ φ(t) dt

.
�

9.2.4 THEOREM

Let U be open, and K ⊂ U compact. Then there exists ψ ∈ C∞
0 which is positive on

K and vanishes outside some other compact set L, K ⊂ L ⊂ U.

Proof For each x ∈ U, let Ax ⊂ U be a bounded open rectangle containing x, whose
closure Ax lies in U. The {Ax} together form an open cover of K. Take a finite
subcover {Axi}. Then the compact rectangles {Axi} also cover K.

From Lemma 9.2.2, obtain functions ψi ∈ C∞
0 that are positive on Axi and vanish

outside Axi . Let ψ = ∑i ψi ∈ C∞
0 . ψ vanishes outside L =

⋃
i Axi , which is compact.�

9.2.5 COROLLARY

In Theorem 9.2.4, it is even possible to require in addition that 0 ≤ ψ(x) ≤ 1 for all
x ∈ Rn and ψ(x) = 1 for x ∈ K.

Proof Let ψ be from Theorem 9.2.4. Since ψ is positive on the compact set K, it has a
positive minimum δ there. Take the function h of Lemma 9.2.3 for this δ. The new
candidate function is h ◦ ψ. �

Proof (Proof of Theorem 9.2.1) Let ϕ = ∑i aiχEi , ai 6= 0 be a simple function such that
‖ϕ− f ‖p < ε/2. Let ψi ∈ C∞

0 such that ‖ψi − χEi‖p < ε/2|ai|. (Note that Ei must
have finite measure; otherwise ϕ would not be integrable.) Let ψ = ∑i aiψi. Then
(Minkowski’s inequality),

‖ f − ψ‖p ≤ ‖ f − ϕ‖p + ‖ϕ− ψ‖p

≤ ‖ f − ϕ‖p + ∑
i
|ai| · ‖χEi − ψi‖p < ε . �
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Actually, even the last part of theorem can be generalized to spaces other than
Rn: instead of infinitely differentiable functions with compact support, we consider
continuous functions, defined on the metric space X, with compact support. In this
case, a topological argument must be found to replace Lemma 9.2.2. This is easy:

9.2.6 LEMMA

Let A be any compact set in X. Then there exists a continuous function φ : X → R

which is positive on the interior of A and zero elsewhere.

Proof Let C = X \ interior A, so C is closed. Then φ(x) = d(x, C) works. (d(x, C)
was defined in the proof of Theorem 9.1.1.) �

The proof of Theorem 9.2.4 goes through verbatim for metric spaces X, provided
that X is locally compact. This means: given any x ∈ X and an open neighborhood
U of x, there exists another open neighborhood V of x, such that V is compact and
V ⊆ U.

Finally, we need to consider when properties (1) and (2) (in the remarks preced-
ing Theorem 9.1.2) are satisfied. These properties are somewhat awkward to state,
so we will introduce some new conditions instead.

9.2.7 DEFINITION

A measure µ on a topological space X is locally finite if for each x ∈ X, there is an
open neighborhood U of x such that µ(U) < ∞.

It is easily seen that when µ is locally finite, then µ(K) < ∞ for every compact set
K.

9.2.8 DEFINITION

A topological space X is strongly sigma-compact if there exists a sequence of open
sets Xn with compact closure, and {Xn} ↗ X.

If X is strongly sigma-compact, and µ is locally finite, then properties (1) and (2)
are automatically satisfied. It is even true that strong sigma-compactness implies
local compactness in a metric space. (The proof requires some topology and is left
as an exercise.) Then we have the following theorem:

9.2.9 THEOREM

Let X be a strongly sigma-compact metric space, and µ be any locally finite measure
on B(X). Then the space of continuous functions with compact support is dense in
Lp(X,B(X), µ), 1 ≤ p < ∞.



Chapter 10

Relation of integral with derivative

10.1 Differentiation with respect to volume

10.1.1 DEFINITION (AVERAGE OF FUNCTION)
The average of a function f ∈ L1

loc(Rn) over a cube of width r > 0 is:

Ar f (x) =
1

µ
(
Q(x, r)

) ∫
Q(x,r)

f dµ .

10.1.2 THEOREM

If f is continuous at x, then Ar f (x)→ f (x) as r → 0.

Proof Same as that of the first fundamental theorem of calculus (Theorem 3.5.1). �

10.1.3 DEFINITION (HARDY-LITTLEWOOD MAXIMAL FUNCTION)
The Hardy-Littlewood maximal function is this operator acting on L1

loc(Rn):

H f (x) = sup
r>0

Ar f (x) = sup
r>0

1
µ
(
Q(x, r)

) ∫
Q(x,r)

| f | dµ .

10.1.4 THEOREM

Ar f is continuous for each r > 0, and H f is a measurable function (in fact, lower
semi-continuous).

Proof Let y → x; then I(Q(y, r)) → I(Q(x, r)) pointwise. Since f is integrable,
and I(Q(y, r)) is clearly majorized by I(Q(x, 2r)) for y close to x, the dominated
convergence theorem implies∫

Q(y,r)
f dµ→

∫
Q(x,r)

f dµ , µ(Q(y, r))→ µ(Q(x, r)) .

Hence Ar f (y)→ Ar f (x).
Then we also have {H f > α} =

⋃
r>0{Ar| f | > α} expressed as a union of open

sets; this shows H f is measurable. �
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10.1.5 LEMMA (CUBIC SUBCOVERING WITH BOUNDED OVERLAP)
Let A ⊆ Rn be any bounded set, and {Q(x, δ(x)) | x ∈ A} be a collection of open
cubes, one for each centre point x ∈ A, with a side length δ(x) > 0 that is selected
from a finite list 0 < δ1 ≤ . . . ≤ δm.

Then there exists a finite subcover of {Q(x, δ(x)} that also covers A, where the
cubes from the finite subcover overlap each other at most 2n times at any point of A.

Proof We select the finite subcover

{Q(xi, δ(xi)) | xi ∈ A , i = 1, . . . , k}
as follows: assuming that x1, . . . , xi−1 have already been chosen, choose xi to be any
element of A \ (Q(x1, δ(x1))∪ · · · ∪Q(xi−1, δ(xi−1))

)
, with the largest possible δ(xi).

We note that this selection process cannot continue indefinitely. For the points xi
chosen will have the open cubes Q(xi, δ(xi)/2) all disjoint; each of these cubes con-
tributes a volume of at least (δ1/2)n. On the other hand, these cubes are contained
in the δm-neighborhood of A, which is bounded and hence has finite volume. So the
finite subcovering by the open cubes will eventually exhaust A.

Finally, we have to show that each y ∈ A is contained in at most 2n elements
of our finite subcover. Draw the 2n rectangular quadrants with origin at y. In each
quadrant, there is at most one cube from our subcover covering y, whose centre xi
lies in that quadrant. For if there were two cubes, then the cube with the larger
width would swallow the centre of the other cube, and this is impossible from the
way we have chosen the points xi. �

10.1.6 THEOREM (THE MAXIMAL INEQUALITY)
For all integrable functions f and α > 0,

µ{H f > α} ≤ 2n

α

∫
Rn
| f | dµ .

Proof Let E = {H f > α}. For each x ∈ E, there exists r(x) > 0 such that Ar(x)| f |(x) >
α. Since Ar(x)| f | is continuous, there is a neighborhood U(x) of x where

1
µ Q(y, r(x))

∫
Q(y,r(x))

| f | dµ = Ar(x)| f |(y) > α , for y ∈ U(x) too.

If K is any compact subset of E, then these neighborhoods U(x) cover K; select a
finite number U(x1), . . . , U(xm) that cover K.

Any y ∈ K is contained in some U(xj); pick one, and let δ(y) = r(xj). The
collection {Q(y, δ(y)) | y ∈ K} satisfies the hypotheses of Lemma 10.1.5. So there
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exists a finite subcollection of cubes {Q(yi, δ(yi)) | i = 1, . . . , k} that cover K and
overlap at most 2n times. Then we have

µ(K) ≤
k

∑
i=1

µ Q(yi, δ(yi)) <
k

∑
i=1

1
α

∫
Q(yi ,δ(yi))

| f | dµ =
1
α

∫
Rn
| f |

k

∑
i=1

I(Q(yi), δ(yi)) dµ

≤ 2n

α

∫
Rn
| f | dµ .

Since K ⊆ E is arbitrary, we obtain the desired result. �

10.2 Fundamental theorem of calculus



Chapter 11

Spaces of Borel measures

11.1 Integration as a linear functional

11.2 Riesz representation theorem

11.3 Fourier analysis of measures

11.4 Applications to probability theory

11.5 Exercises

11.1 (Glivenko-Cantelli theorem) Let X1, X2, . . . be independently identically distributed
random variables representing observation samples. Let

Fn(y) =
1
n

n

∑
i=1

I(y ≥ Xi)

be the empirical cumulative distribution functions, and µn be the corresponding
probability measures. Then P-almost surely, µn converges weakly to the pull-back
measure λ(B) = P(X1 ∈ B). Also, P-almost surely, Fn(x) → x uniformly in x as
n→ ∞.
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Chapter 12

Miscellaneous topics

12.1 Dual space of Lp

12.2 Egorov’s Theorem

The following theorem does not really belong in a first course, but it is quite a sur-
prising and interesting result, and I want to record its proof.

12.2.1 THEOREM (EGOROV)
Let (X, µ) be a measure space of finite measure, and fn : X → R be a sequence of
measurable functions convergent almost everywhere to f . Then given any ε > 0,
there exists a measurable subset A ⊆ X such that µ(X \ A) < ε and the sequence fn
converges uniformly to f on A.

Proof First define

Bn,m =
∞⋂

k=n

[
| fk − f | < 1

m

]
.

Fix m. For most x ∈ X, fn(x) converges to f (x), so there exists n such that
| fk(x)− f (x)| < 1/m for all k ≥ n, so x ∈ Bn,m. Thus we see {Bn,m}n ↗ X \ C, C
being some set of measure zero.

We construct the set A inductively as follows. Set A0 = X \ C. For each m > 0,
since {Am−1 ∩ Bn,m}n ↗ Am−1, we have µ(Am−1 \ Bn,m)→ 0, so we can choose n(m)
such that

µ(Am−1 \ Bn(m),m) <
ε

2m .

Furthermore set
Am = Am−1 ∩ Bn(m),m .

Since Am ] (Am−1 \ Bn(m),m) = Am−1, we have

µ(Am) > µ(Am−1)− ε

2m

> µ(X)− ε

2
− ε

4
− · · · − ε

2m ≥ µ(X)− ε .
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The sets Am are decreasing, so letting

A =
∞⋂

m=1

Am =
∞⋂

m=1

Bn(m),m ,

we have µ(A) ≥ µ(X)− ε, or µ(X \ A) ≤ ε. Finally, for x ∈ A, x ∈ Bn(m),m for all m,
showing that | f (x)− fk(x)| < 1/m whenever k ≥ n(m). This condition is uniform
for all x ∈ A. �

12.3 Integrals taking values in Banach spaces

We give an introduction to the Lebesgue integral generalized to vector functions
and vector measures. The vector spaces may be infinite-dimensional; to have vector
analogues of fundamental results such as the Lebesgue Dominated Convergence
Theorem, we will require that a norm is available — so we assume1 the vector spaces
are Banach spaces.

First, we consider vector-valued functions f : Ω→ X, where (Ω, Σ) is a measure
space and X is a Banach space, but keep the measure µ to be a real positive measure.

The measurability of vector-valued functions is defined the same way as for real-
valued functions. Since there is no concept of “infinity” in a vector space in general,
when integrating, we restrict attention to functions f such that

∫
Ω‖ f ‖ dµ is finite.

(Note that this is an real-valued integral we have already defined.)
However, if X is infinite-dimensional, even the restriction

∫
Ω‖ f ‖ dµ < ∞ does

not suffice. First, note that since X has no order relation, Definition 2.4.5 does not
carry over; we are forced to define

∫
f dµ as the limit of

∫
ϕn dµ for simple functions

ϕn, which we can compute using basic vector addition and scalar multiplication.
However, Theorem 2.4.10 fails; there does not seem to be a way (outside of simple
spaces such as Rn) to obtain the simple functions ϕn that converge to f . Therefore,
we postulate this property:

12.3.1 DEFINITION

Let (Ω, Σ) be a measurable space, and (X,B(X)) be a Banach space together with
the Borel measure. A function f : Ω → X is strongly Σ-measurable if there exists
a sequence of Σ-measurable simple functions ϕn : Ω → X that converge to f point-
wise.

12.3.2 PROPOSITION

If fn : Ω→ X is a sequence of measurable functions convergent pointwise to f : Ω→
X, then f is measurable.

1Although a weaker analogue of Lebesgue integration is also available for topological vector
spaces.
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Proof We prove that f−1(U) is measurable in Ω for every open set U in X.
Let Uk = {x ∈ X : d(x, X \ U) > 1/k}, an open set. Evidently, the countable

union of all the sets Uk is U.
Given x ∈ X and ω ∈ Ω, the statement x = f (ω) = limn fn(ω) implies that

{ fn(ω)}n≥N lies inside the ball B(x; 1/k) when N is large enough. Since B(x; 1/k) ⊆
Uk for any x ∈ X, we have

f−1(Uk) =
{

ω ∈ Ω : lim
n→∞

fn(ω) ∈ Uk

}
⊆ lim inf

n→∞
f−1
n (Uk) .

(For a sequence of sets An ⊆ Ω, the set lim infn An is defined to be the set of all ω ∈ Ω
such that ω is in An when n is large enough. Formally, lim infn An =

⋃∞
n=1

⋂∞
m=n Am.)

Moreover, if ω ∈ Ω is such that fn(ω) ∈ Uk, then f (ω) = limn fn(ω) ∈ Uk ⊆ U.
Therefore,

f−1(U) =
∞⋃

k=1

f−1(Uk) ⊆
∞⋃

k=1

lim inf
n→∞

f−1
n (Uk) ⊆ f−1(U) ,

and the expression in the middle shows f−1(U) is measurable. �

12.3.3 COROLLARY

A strongly measurable function is measurable.

Proof By definition, a strongly-measurable function is the pointwise limit of measur-
able simple functions. �

There is another observation about a strongly measurable function f . If ϕn are
simple functions convergent to f , then the range of f must be a separable sub-
space of X. That is, f (Ω) ⊆ D for a countable set D — in fact, D can be taken as
{ϕn(ω) : ω ∈ Ω, n ∈N}.

Even more interestingly, if we examine the proof of Theorem (2.4.10), we see
that it essentially is using the fact that the dyadic rationals (countable in number)
are dense in R. So we speculate in general:

12.3.4 THEOREM

A function f : Ω → X is strongly measurable if and only if it is measurable and its
range f (Ω) is separable in X.

Proof We already know that the “only if” direction is true. For the “if” direction,
let D = {yn}n∈N be a countable set such that f (Ω) ⊆ D, and define the functions
φN : X → D ⊆ X by the following prescription. For x ∈ X, let φN(x) = yk where k
is the smallest number that minimizes the distance ‖yk − x‖ amongst the numbers
1 ≤ k ≤ N.

For every x ∈ D, we have limN φN(x) = x:

‖φN(x)− x‖ = min
0≤n≤N

‖x− yn‖ ↘ 0 as N → ∞,

because {yn} is dense in D.
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To show that φN is measurable, it suffices to show that φ−1
N ({yk}) is measurable

for 1 ≤ k ≤ N, since φN takes on only the values y1, . . . , yN . This just involves
translating the description of φN into formal symbols:

[
φN = yk

]
=

k−1⋂
j=1

{
x ∈ X : ‖x− yk‖ < ‖x− yj‖

}
∩

N⋂
j=k+1

{
x ∈ X : ‖x− yk‖ ≤ ‖x− yj‖

}
.

The above expression describes a Borel set.
Finally, if we set fN = φN ◦ f , then fN → f pointwise, and fN : Ω → D are

measurable simple functions. �

Although we only required pointwise convergence in our definitions, we can au-
tomatically obtain the sort of convergence required for the Dominated Convergence
Theorem:

12.3.5 THEOREM

A function f : Ω → X is strongly measurable if and only if there exists a sequence
of measurable simple functions ϕn : Ω → X such that ϕn → f and ‖ϕn‖ ≤ ‖ f ‖
pointwise.

Proof Suppose fn : Ω → X is a sequence of measurable simple functions that con-
verge to the measurable function f . Let gn : Ω → R be a sequence of measurable
simple functions that increase to the measurable function ‖ f ‖. Then

ϕn =
{ ‖ fn‖−1gn fn , fn 6= 0

0 , fn = 0

are measurable simple functions that converge to f pointwise, and ‖ϕn‖ = gn ≤ ‖ f ‖
for all n. �

Now we are ready to define vector integration proper:

12.3.6 DEFINITION

Let (Ω, µ) be a measure space, and X be a Banach space. The space L1(µ, X) of
integrable functions consists of all strongly µ-measurable functions f : Ω→ X such
that

∫
Ω‖ f ‖ dµ < ∞.

12.3.7 DEFINITION

For a simple function ϕ ∈ L1(µ, X), its integral is defined by the obvious linear
combination ∫

Ω
ϕ dµ =

n

∑
k=1

xk µ(Ek) , ϕ =
n

∑
k=1

xk χEk , xk ∈ X ,

provided all µ(Ek) are finite quantities.
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It follows as before that this integral is well defined, it is linear, and satisfies the
triangle inequality.

12.3.8 DEFINITION

To integrate a general function f ∈ L1(µ, X), compute∫
Ω

f dµ = lim
n→∞

∫
Ω

ϕn dµ

using any sequence of simple functions ϕn ∈ L1(µ, X) which converges to f in
L1(µ, X) — that is,

∫
Ω‖ϕn → f ‖ dµ→ 0 as n→ ∞.

The sequence of simple functions ϕn in this definition can be obtained from The-
orem 12.3.5. The Dominated Convergence Theorem for real-valued functions and
integrals shows that sequence converges to f in L1. And the limit of

∫
ϕn exists, for∥∥∥∫ ϕn dµ−

∫
ϕm dµ

∥∥∥ ≤ ∫ ‖ϕn − ϕm‖ dµ→ 0 , as n, m→ ∞

(‖ϕn − ϕm‖ → 0 pointwise with a dominating factor 2‖ f ‖). Thus the sequence
∫

ϕn
is a Cauchy sequence and converges in the Banach space X. Similarly, if ϕ′n were
another sequence satisfying the same conditions,∥∥∥∫ ϕn dµ−

∫
ϕ′n dµ

∥∥∥ ≤ ∫ ‖ϕn − f ‖ dµ +
∫
‖ϕ′n − f ‖ dµ→ 0 ,

so the value of the integral is the same regardless of which sequence is used to com-
pute it.

The vector-valued integral satisfies linearity and the generalized triangle inequal-
ity, and these assertions are easily proven by taking limits from simple functions.

12.3.9 THEOREM

Let (Ω, µ) be a measure space, and X and Y be Banach spaces. If T : X → Y is a
continuous linear mapping, and f ∈ L1(µ, X), then T ◦ f ∈ L1(µ, Y) and

T
(∫

Ω
f dµ

)
=
∫

Ω
T ◦ f dµ .

Proof The equation is obvious for simple functions, and get the general case by tak-
ing limits. �



Appendix A

Results from other areas of
mathematics

A.1 Extended real number system

A.1.1 DEFINITION (EXTENDED REAL NUMBER SYSTEM)
The extended real numbers is the set

R = R∪ {−∞, +∞} ,

consisting of the usual real numbers and the infinite quantities in both the positive
and negative direction. The quantity +∞ will often be abbreviated as simply “∞”.

Although R together with the infinities do not form a field (in the algebraic
sense), some arithmetic operations with infinities can still be reasonably defined,
to be compatible with their usual interpretations of limits of ordinary real numbers:

−∞ ≤ a ≤ ∞ , a ∈ R .
∞ + ∞ = ∞ .
−(±∞) = ∓∞ .

a ·∞ = +∞ , a > 0 .
a ·∞ = −∞ , a < 0 .
a/∞ = 0 , a 6= ±∞ .

Elementary calculus textbooks ostensibly avoid defining R as to not confuse stu-
dents with undefined expressions such as “∞−∞”. These expressions will pose no
problem for us, as we simply will have no use for them, and we can just disallow
them outright.

But the other rules for ±∞ are convenient for packaging results without having
to analyze separately the bounded and unbounded cases. For example, if λ denotes
the area of a subset of the plane, then λ([0, w]× [0, h]) = wh; while λ(R2) = ∞.
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A.2 Linear algebra

A.3 Multivariate calculus
A.3.1 THEOREM (MEAN VALUE THEOREM)

Let g : U → Rm be a differentiable map on an open subset U ⊆ Rn. If x, y are points
in U, and the line segment joining x and y lies entirely in U, then there exists ξ lying
on that line segment for which

‖g(x)− g(y)‖ ≤ ‖Dg(ξ)(x− y)‖ ≤ ‖Dg(ξ)‖ ‖x− y‖ .

(The operator norm of any linear transformation T between normed vector spaces
is defined by:

‖T‖ = sup
u 6=0

‖Tu‖
‖u‖ = sup

‖u‖=1
‖Tu‖ ;

the supremum is finite if the domain vector space is Rn, for the unit sphere in Rn is
compact.)

A.3.2 THEOREM (INVERSE FUNCTION THEOREM)
Let f : X → Rn be a continuous differentiable function on an open set X ⊆ Rn.
If Dg(x) is non-singular at some x ∈ X, then f maps some open neighborhood of
x, U ⊆ X, bijectively to an open set f (U), and the inverse mapping there is also
continuously differentiable.

A.3.3 LEMMA (FACTORIZATION OF DIFFEOMORPHISMS)
Let g be a diffeomorphism of open sets in Rn, for n ≥ 2. For any point in the domain
of g, there is a neighborhood A around that point where g can be expressed as the
composition:

g|A = u ◦ v ,

of a diffeomorphism u that fixes some 0 < m < n coordinates of Rn and another
diffeomorphism v that fixes the other n−m coordinates.

Proof We have to solve the above equation for the appropriate diffeomorphisms
v : A → v(A) and u : v(A) → g(A). Let x ∈ Rm and y ∈ Rn−m be the coordinate
values. Labelling the first batch and second batch of coordinates with the subscripts
“1” and “2” respectively, we expand:

g(x, y) = u
(
v(x, y)

)
=
(

u1
(
v1(x, y), v2(x, y)

)
, u2
(
v(x, y)

))
=
(

u1
(
v1(x, y), y

)
, u2
(
v(x, y)

))
since v fixes last coords

=
(

v1(x, y), u2
(
v(x, y)

))
since u fixes first coords.
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Or, succinctly:
g1 = v1 , g2 = u2 ◦ v .

The first equation determines the solution function v trivially. The second equation
can be inverted by the inverse function theorem:

u2 = g2 ◦ v−1 ,

for

Dv(x, y) =
[

D1g1(x, y) D2g1(x, y)
0 I

]
, det Dv(x, y) = det D1g1(x, y) 6= 0 .

So given a starting point (x0, y0) in the domain of g, we can define v−1 on some
open set B containing v(x0, y0). Then take A = v−1(B). �

A.4 Point-set topology

A.4.1 THEOREM (LINDELÖF’S THEOREM)
If X is a second-countable topological space, then every open cover of X has a count-
able subcover.

A.4.2 COROLLARY

Every open cover of an open subset of Rn has a countable subcover.

A.5 Functional analysis

A.6 Fourier analysis
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Bibliography

First, you need a respectable first-year calculus course, dealing with limits rigor-
ously. The course I took used [Spivak1] (possibly the best math book ever).

You should be at least somewhat familiar with multi-dimensional calculus, if
only to have a motivation for the theorems we prove (e.g. Fubini’s Theorem, Change
of Variables). I learned multi-dimensional calculus from [Spivak2] and [Munkres].
As you’d expect, these are theoretical books, and not very practical, but we will need
a few elementary results that these books prove.

Point-set topology is also introduced in the study of multi-dimensional calculus.
We will not need a deep understanding of that subject here, but just the basic defini-
tions and facts about open sets, closed sets, compact sets, continous maps between
topological spaces, and metric spaces. I don’t have particular references for these,
as it has become popular to learn topology with Moore’s method (as I have done),
where you are given lists of theorems that you are supposed to prove alone.

The last book, [Rosenthal], (not a prerequesite) is what I mostly referred to while
writing up Section 5.1. It contains applications to probability of the abstract measure
stuff we do here, and it is not overly abstract. I recommend it, and it’s cheap too.

I don’t mention any of the standard real analysis or measure theory books here,
since I don’t have them handy, and this text is supposed to supplant a fair portion
of these books anyway. But surely you can find references elsewhere.
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Copying and distribution rights to
this document

Permission is granted to copy, distribute and/or modify this document under the
terms of the GNU Free Documentation License, Version 1.2 or any later version
published by the Free Software Foundation; with no Invariant Sections, with no
Front-Cover Texts, and with no Back-Cover Texts.

Version 1.2, November 2002
Copyright c© 2000,2001,2002 Free Software Foundation, Inc.

51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA

Everyone is permitted to copy and distribute verbatim copies of this license
document, but changing it is not allowed.

Preamble

The purpose of this License is to make a manual, textbook, or other functional
and useful document “free” in the sense of freedom: to assure everyone the effective
freedom to copy and redistribute it, with or without modifying it, either commer-
cially or noncommercially. Secondarily, this License preserves for the author and
publisher a way to get credit for their work, while not being considered responsible
for modifications made by others.

This License is a kind of “copyleft”, which means that derivative works of the
document must themselves be free in the same sense. It complements the GNU
General Public License, which is a copyleft license designed for free software.

We have designed this License in order to use it for manuals for free software,
because free software needs free documentation: a free program should come with
manuals providing the same freedoms that the software does. But this License is
not limited to software manuals; it can be used for any textual work, regardless of
subject matter or whether it is published as a printed book. We recommend this
License principally for works whose purpose is instruction or reference.
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1. APPLICABILITY AND DEFINITIONS

This License applies to any manual or other work, in any medium, that contains
a notice placed by the copyright holder saying it can be distributed under the terms
of this License. Such a notice grants a world-wide, royalty-free license, unlimited
in duration, to use that work under the conditions stated herein. The “Document”,
below, refers to any such manual or work. Any member of the public is a licensee,
and is addressed as “you”. You accept the license if you copy, modify or distribute
the work in a way requiring permission under copyright law.

A “Modified Version” of the Document means any work containing the Docu-
ment or a portion of it, either copied verbatim, or with modifications and/or trans-
lated into another language.

A “Secondary Section” is a named appendix or a front-matter section of the
Document that deals exclusively with the relationship of the publishers or authors
of the Document to the Document’s overall subject (or to related matters) and con-
tains nothing that could fall directly within that overall subject. (Thus, if the Doc-
ument is in part a textbook of mathematics, a Secondary Section may not explain
any mathematics.) The relationship could be a matter of historical connection with
the subject or with related matters, or of legal, commercial, philosophical, ethical or
political position regarding them.

The “Invariant Sections” are certain Secondary Sections whose titles are desig-
nated, as being those of Invariant Sections, in the notice that says that the Document
is released under this License. If a section does not fit the above definition of Sec-
ondary then it is not allowed to be designated as Invariant. The Document may
contain zero Invariant Sections. If the Document does not identify any Invariant
Sections then there are none.

The “Cover Texts” are certain short passages of text that are listed, as Front-
Cover Texts or Back-Cover Texts, in the notice that says that the Document is re-
leased under this License. A Front-Cover Text may be at most 5 words, and a Back-
Cover Text may be at most 25 words.

A “Transparent” copy of the Document means a machine-readable copy, repre-
sented in a format whose specification is available to the general public, that is suit-
able for revising the document straightforwardly with generic text editors or (for
images composed of pixels) generic paint programs or (for drawings) some widely
available drawing editor, and that is suitable for input to text formatters or for auto-
matic translation to a variety of formats suitable for input to text formatters. A copy
made in an otherwise Transparent file format whose markup, or absence of markup,
has been arranged to thwart or discourage subsequent modification by readers is not
Transparent. An image format is not Transparent if used for any substantial amount
of text. A copy that is not “Transparent” is called “Opaque”.

Examples of suitable formats for Transparent copies include plain ASCII with-
out markup, Texinfo input format, LaTeX input format, SGML or XML using a pub-
licly available DTD, and standard-conforming simple HTML, PostScript or PDF de-
signed for human modification. Examples of transparent image formats include
PNG, XCF and JPG. Opaque formats include proprietary formats that can be read
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and edited only by proprietary word processors, SGML or XML for which the DTD
and/or processing tools are not generally available, and the machine-generated
HTML, PostScript or PDF produced by some word processors for output purposes
only.

The “Title Page” means, for a printed book, the title page itself, plus such fol-
lowing pages as are needed to hold, legibly, the material this License requires to
appear in the title page. For works in formats which do not have any title page as
such, “Title Page” means the text near the most prominent appearance of the work’s
title, preceding the beginning of the body of the text.

A section “Entitled XYZ” means a named subunit of the Document whose title
either is precisely XYZ or contains XYZ in parentheses following text that trans-
lates XYZ in another language. (Here XYZ stands for a specific section name men-
tioned below, such as “Acknowledgements”, “Dedications”, “Endorsements”, or
“History”.) To “Preserve the Title” of such a section when you modify the Docu-
ment means that it remains a section “Entitled XYZ” according to this definition.

The Document may include Warranty Disclaimers next to the notice which states
that this License applies to the Document. These Warranty Disclaimers are consid-
ered to be included by reference in this License, but only as regards disclaiming
warranties: any other implication that these Warranty Disclaimers may have is void
and has no effect on the meaning of this License.

2. VERBATIM COPYING

You may copy and distribute the Document in any medium, either commer-
cially or noncommercially, provided that this License, the copyright notices, and
the license notice saying this License applies to the Document are reproduced in all
copies, and that you add no other conditions whatsoever to those of this License.
You may not use technical measures to obstruct or control the reading or further
copying of the copies you make or distribute. However, you may accept compensa-
tion in exchange for copies. If you distribute a large enough number of copies you
must also follow the conditions in section 3.

You may also lend copies, under the same conditions stated above, and you may
publicly display copies.

3. COPYING IN QUANTITY

If you publish printed copies (or copies in media that commonly have printed
covers) of the Document, numbering more than 100, and the Document’s license
notice requires Cover Texts, you must enclose the copies in covers that carry, clearly
and legibly, all these Cover Texts: Front-Cover Texts on the front cover, and Back-
Cover Texts on the back cover. Both covers must also clearly and legibly identify
you as the publisher of these copies. The front cover must present the full title with
all words of the title equally prominent and visible. You may add other material
on the covers in addition. Copying with changes limited to the covers, as long as
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they preserve the title of the Document and satisfy these conditions, can be treated
as verbatim copying in other respects.

If the required texts for either cover are too voluminous to fit legibly, you should
put the first ones listed (as many as fit reasonably) on the actual cover, and continue
the rest onto adjacent pages.

If you publish or distribute Opaque copies of the Document numbering more
than 100, you must either include a machine-readable Transparent copy along with
each Opaque copy, or state in or with each Opaque copy a computer-network lo-
cation from which the general network-using public has access to download using
public-standard network protocols a complete Transparent copy of the Document,
free of added material. If you use the latter option, you must take reasonably pru-
dent steps, when you begin distribution of Opaque copies in quantity, to ensure that
this Transparent copy will remain thus accessible at the stated location until at least
one year after the last time you distribute an Opaque copy (directly or through your
agents or retailers) of that edition to the public.

It is requested, but not required, that you contact the authors of the Document
well before redistributing any large number of copies, to give them a chance to pro-
vide you with an updated version of the Document.

4. MODIFICATIONS

You may copy and distribute a Modified Version of the Document under the
conditions of sections 2 and 3 above, provided that you release the Modified Ver-
sion under precisely this License, with the Modified Version filling the role of the
Document, thus licensing distribution and modification of the Modified Version to
whoever possesses a copy of it. In addition, you must do these things in the Modi-
fied Version:

A. Use in the Title Page (and on the covers, if any) a title distinct from that of
the Document, and from those of previous versions (which should, if there
were any, be listed in the History section of the Document). You may use the
same title as a previous version if the original publisher of that version gives
permission.

B. List on the Title Page, as authors, one or more persons or entities responsible
for authorship of the modifications in the Modified Version, together with at
least five of the principal authors of the Document (all of its principal authors,
if it has fewer than five), unless they release you from this requirement.

C. State on the Title page the name of the publisher of the Modified Version, as
the publisher.

D. Preserve all the copyright notices of the Document.

E. Add an appropriate copyright notice for your modifications adjacent to the
other copyright notices.
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F. Include, immediately after the copyright notices, a license notice giving the
public permission to use the Modified Version under the terms of this License,
in the form shown in the Addendum below.

G. Preserve in that license notice the full lists of Invariant Sections and required
Cover Texts given in the Document’s license notice.

H. Include an unaltered copy of this License.

I. Preserve the section Entitled “History”, Preserve its Title, and add to it an
item stating at least the title, year, new authors, and publisher of the Modified
Version as given on the Title Page. If there is no section Entitled “History” in
the Document, create one stating the title, year, authors, and publisher of the
Document as given on its Title Page, then add an item describing the Modified
Version as stated in the previous sentence.

J. Preserve the network location, if any, given in the Document for public access
to a Transparent copy of the Document, and likewise the network locations
given in the Document for previous versions it was based on. These may be
placed in the “History” section. You may omit a network location for a work
that was published at least four years before the Document itself, or if the
original publisher of the version it refers to gives permission.

K. For any section Entitled “Acknowledgements” or “Dedications”, Preserve the
Title of the section, and preserve in the section all the substance and tone of
each of the contributor acknowledgements and/or dedications given therein.

L. Preserve all the Invariant Sections of the Document, unaltered in their text and
in their titles. Section numbers or the equivalent are not considered part of the
section titles.

M. Delete any section Entitled “Endorsements”. Such a section may not be in-
cluded in the Modified Version.

N. Do not retitle any existing section to be Entitled “Endorsements” or to conflict
in title with any Invariant Section.

O. Preserve any Warranty Disclaimers.

If the Modified Version includes new front-matter sections or appendices that
qualify as Secondary Sections and contain no material copied from the Document,
you may at your option designate some or all of these sections as invariant. To do
this, add their titles to the list of Invariant Sections in the Modified Version’s license
notice. These titles must be distinct from any other section titles.

You may add a section Entitled “Endorsements”, provided it contains nothing
but endorsements of your Modified Version by various parties–for example, state-
ments of peer review or that the text has been approved by an organization as the
authoritative definition of a standard.
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You may add a passage of up to five words as a Front-Cover Text, and a passage
of up to 25 words as a Back-Cover Text, to the end of the list of Cover Texts in the
Modified Version. Only one passage of Front-Cover Text and one of Back-Cover
Text may be added by (or through arrangements made by) any one entity. If the
Document already includes a cover text for the same cover, previously added by
you or by arrangement made by the same entity you are acting on behalf of, you
may not add another; but you may replace the old one, on explicit permission from
the previous publisher that added the old one.

The author(s) and publisher(s) of the Document do not by this License give per-
mission to use their names for publicity for or to assert or imply endorsement of any
Modified Version.

5. COMBINING DOCUMENTS

You may combine the Document with other documents released under this Li-
cense, under the terms defined in section 4 above for modified versions, provided
that you include in the combination all of the Invariant Sections of all of the original
documents, unmodified, and list them all as Invariant Sections of your combined
work in its license notice, and that you preserve all their Warranty Disclaimers.

The combined work need only contain one copy of this License, and multiple
identical Invariant Sections may be replaced with a single copy. If there are multiple
Invariant Sections with the same name but different contents, make the title of each
such section unique by adding at the end of it, in parentheses, the name of the origi-
nal author or publisher of that section if known, or else a unique number. Make the
same adjustment to the section titles in the list of Invariant Sections in the license
notice of the combined work.

In the combination, you must combine any sections Entitled “History” in the
various original documents, forming one section Entitled “History”; likewise com-
bine any sections Entitled “Acknowledgements”, and any sections Entitled “Dedi-
cations”. You must delete all sections Entitled “Endorsements”.

6. COLLECTIONS OF DOCUMENTS

You may make a collection consisting of the Document and other documents re-
leased under this License, and replace the individual copies of this License in the
various documents with a single copy that is included in the collection, provided
that you follow the rules of this License for verbatim copying of each of the docu-
ments in all other respects.

You may extract a single document from such a collection, and distribute it in-
dividually under this License, provided you insert a copy of this License into the
extracted document, and follow this License in all other respects regarding verba-
tim copying of that document.

7. AGGREGATION WITH INDEPENDENT WORKS
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A compilation of the Document or its derivatives with other separate and inde-
pendent documents or works, in or on a volume of a storage or distribution medium,
is called an “aggregate” if the copyright resulting from the compilation is not used
to limit the legal rights of the compilation’s users beyond what the individual works
permit. When the Document is included in an aggregate, this License does not ap-
ply to the other works in the aggregate which are not themselves derivative works
of the Document.

If the Cover Text requirement of section 3 is applicable to these copies of the
Document, then if the Document is less than one half of the entire aggregate, the
Document’s Cover Texts may be placed on covers that bracket the Document within
the aggregate, or the electronic equivalent of covers if the Document is in electronic
form. Otherwise they must appear on printed covers that bracket the whole aggre-
gate.

8. TRANSLATION

Translation is considered a kind of modification, so you may distribute transla-
tions of the Document under the terms of section 4. Replacing Invariant Sections
with translations requires special permission from their copyright holders, but you
may include translations of some or all Invariant Sections in addition to the original
versions of these Invariant Sections. You may include a translation of this License,
and all the license notices in the Document, and any Warranty Disclaimers, pro-
vided that you also include the original English version of this License and the orig-
inal versions of those notices and disclaimers. In case of a disagreement between
the translation and the original version of this License or a notice or disclaimer, the
original version will prevail.

If a section in the Document is Entitled “Acknowledgements”, “Dedications”, or
“History”, the requirement (section 4) to Preserve its Title (section 1) will typically
require changing the actual title.

9. TERMINATION

You may not copy, modify, sublicense, or distribute the Document except as ex-
pressly provided for under this License. Any other attempt to copy, modify, sub-
license or distribute the Document is void, and will automatically terminate your
rights under this License. However, parties who have received copies, or rights,
from you under this License will not have their licenses terminated so long as such
parties remain in full compliance.

10. FUTURE REVISIONS OF THIS LICENSE

The Free Software Foundation may publish new, revised versions of the GNU
Free Documentation License from time to time. Such new versions will be similar
in spirit to the present version, but may differ in detail to address new problems or
concerns. See http://www.gnu.org/copyleft/.
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Each version of the License is given a distinguishing version number. If the
Document specifies that a particular numbered version of this License “or any later
version” applies to it, you have the option of following the terms and conditions
either of that specified version or of any later version that has been published (not
as a draft) by the Free Software Foundation. If the Document does not specify a
version number of this License, you may choose any version ever published (not as
a draft) by the Free Software Foundation.

ADDENDUM: How to use this License for your documents

To use this License in a document you have written, include a copy of the License
in the document and put the following copyright and license notices just after the
title page:

Copyright c© YEAR YOUR NAME. Permission is granted to copy, dis-
tribute and/or modify this document under the terms of the GNU Free
Documentation License, Version 1.2 or any later version published by the
Free Software Foundation; with no Invariant Sections, no Front-Cover
Texts, and no Back-Cover Texts. A copy of the license is included in the
section entitled “GNU Free Documentation License”.

If you have Invariant Sections, Front-Cover Texts and Back-Cover Texts, replace
the “with . . . Texts.” line with this:

with the Invariant Sections being LIST THEIR TITLES, with the Front-
Cover Texts being LIST, and with the Back-Cover Texts being LIST.

If you have Invariant Sections without Cover Texts, or some other combination
of the three, merge those two alternatives to suit the situation.

If your document contains nontrivial examples of program code, we recommend
releasing these examples in parallel under your choice of free software license, such
as the GNU General Public License, to permit their use in free software.
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