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Preface

In short, in this article we discuss the problem of differentiating under the integral sign.
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We assume a passing familiarity of the theory of distributions by Laurent Schwartz, and
no more. (Even the author is just a beginner on this theory.) However, even readers who
do not care much about the theory may find the section with worked-out computational
examples to be useful.

The theory expoused in this article is nothing new: analysts in the nineteenth and
twentieth centuries no doubt recognized the issues that crop up with exchanging partial
derivatives and integration, and had fixes for them — though probably through ad-hoc
methods before Schwartz’s theory of distributions.

But I hope this article would serve a purpose in explaining the application of the
concepts at a more elementary level than the standard works on distribution theory,
while not losing rigor for the mathematically-minded audience. Certainly no calculus
book nowadays, even non-rigorous ones, dare talk about delta functions, even though
they are valuable calculation tools for the engineer and physicist.

I would like to thank Kamyar Hazaveh, who is an engineer, working on the same
problem set as I one day; I would not have written this article if not for him posing the
question on differentiation under the integral; I would also like to thank Matt Towers
(“silverfish”) and Raymond Puzio at PlanetMath for their encouraging comments in my
investigation of the present problem. (Which only confirms how little people seem to know
about differentiation under the integral sign!) And I should also mention that problem
set originated from Prof. Sebastian Jaimungal, a former physicist, who also motivated
my investigation with his helpful comments on what to do when differentiating integrands
that are not smooth.

1 Introduction

Let X be an open subset of Rm, and Ω be a measure space. Given f : X × Ω → R, and
consider the integral with parameter

g(x) =

∫
Ω

f(x, ω) dω

(assuming it is well-defined).
We want to differentiate g, and we hope that

∂g(x)

∂xi
=

∫
Ω

∂f(x, ω)

∂xi
dω ,

as often asserted in non-rigorous expositions of calculus without qualification.
If f is sufficiently nice — for example, it satisfies the conditions of Theorem A.1 —

then the swap of the integration and differentiation can be proven to be valid.
However, when we do enough calculations switching integration and differentiation,

we soon begin to realize that the conditions allowing the interchange are probably a lot
more general than what the usual mathematical theorems would tell us. For example, in
applications, ∂f(x, ω)/∂xi may exist except for a limited number of singularities; if we go
ahead and differentiate under the integral sign anyway, experimenting and fudging a little
with the Dirac delta function and the like, we seem to always obtain the correct result.

As the involvement of the Dirac delta function suggests, differentiation under the
integral sign can be more generally formulated as a problem with generalized functions
(the distributions of Laurent Schwartz) and their integrals and derivatives. In this note,
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we justify, using generalized derivatives, differentiation under the integral sign, in the cases
when f does not satisfy the prerequisite basic conditions, or even when ∂f(x, ω)/∂xi fails
to exist for certain values of x and ω.

Although the theory concerns the weak derivatives of generalized functions, in practical
calculations, the final results obtained will often be seen to have strong (usual/classical)
derivatives that agree with their weak derivatives except at certain singularities. Thus
weak derivatives will intervene as a calculation tool, much as complex analysis intermedi-
ates results about real functions, and fundamental solutions/Green’s functions interme-
diate results about ordinary solutions of partial differential equations.

2 Abstract theory

For an ordinary function f : X × Ω → R, the meaning of the expression
∫

Ω
f(x, ω) dω

is immediate. But to obtain the utmost generality, and to simplify the proofs of the
fundamental result, we need to extend the notion of integrating a function with respect
to one variable while holding the other fixed, to arbitrary generalized functions f .

This leads us naturally to the following definition.

Definition 2.1. Let f(x, ω) be a generalized function of x ∈ X, for each fixed ω ∈ Ω.
Let φ denote any function from some suitable class of test functions on X defining the
space of generalized functions.

Suppose that the Lebesgue integral∫
Ω

(∫
X

f(x, ω)φ(x) dx

)
dω :=

∫
Ω

〈f(·, ω), φ〉 dω (1)

exists as a finite quantity (converges absolutely) for all test functions φ. Then we define
the generalized function

g(x) =

∫
Ω

f(x, ω) dω

by ∫
X

(∫
Ω

f(x, ω) dω

)
φ(x) dx := 〈g, φ〉 :=

∫
Ω

(∫
X

f(x, ω)φ(x) dx

)
dω . (2)

However, without additional assumptions on f , the linear functional defined by equa-
tion (2) may not be a continuous linear functional, and hence will not be a genuine
generalized function. To fix this problem, we can impose this straightforward hypothesis:

Criterion 2.2 (Continuity). For every convergent1 sequence {φn} of test functions, we
stipulate that ∫

Ω

sup
n

∣∣∣〈f(·, ω), φn〉
∣∣∣ dω <∞ . (3)

Proof that the criterion suffices. For any sequence of test functions {φn} converging to φ,
we have 〈f(·, ω), φn〉 converging to 〈f(·, ω), φ〉 as n→∞, for each ω ∈ Ω. Then the bound
(3) gives the dominating factor for the Lebesgue Dominated Convergence Theorem that
allows us to deduce 〈g, φn〉 → 〈g, φ〉. �

1The convergence is in the topology of the space of test functions for the generalized functions.
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2.1 Weak differentiation

Proposition 2.3. Let f(x, ω) be a generalized function of x ∈ X, for each ω ∈ Ω. If∫
Ω

f(x, ω) dω

exists, then so does ∫
Ω

∂

∂xi
f(x, ω) dω .

Proof. First, we have to show that hypothesis (1) holds for ∂f/∂xi: that∫
Ω

〈 ∂f
∂xi

, φ〉 dω

exists for every test function φ. But the integrand is, by the definition of the derivative
of a generalized function, equal to −〈f(·, ω), ∂φ/∂xi〉. And the integral over Ω of this
quantity exists because

∫
Ω
f(·, ω) dω exists and ∂φ/∂xi is also a test function.

Criterion 2.2 is verified likewise:∫
Ω

sup
n

∣∣∣〈 ∂f
∂xi

, φn〉
∣∣∣ dω =

∫
Ω

sup
n

∣∣∣−〈f(·, ω),
∂φn
∂xi
〉
∣∣∣ dω <∞ ,

noting that ∂φn/∂xi → ∂φ/∂xi whenever φn → φ. �

Theorem 2.4 (Differentiation under the integral sign). Let f(x, ω) be a generalized func-
tion of x, for each ω ∈ Ω, such that

∫
Ω
f(x, ω) dω exists. Then

∂

∂xi

∫
Ω

f(x, ω) dω =

∫
Ω

∂

∂xi
f(x, ω) dω .

Proof. The integral on the right-hand side of the equation above makes sense in light of
Proposition 2.3.

Set g(x) =
∫

Ω
f(x, ω) dω. For every test function φ,

〈 ∂g
∂xi

, φ〉 = −〈g, ∂φ
∂xi
〉 = −

∫
Ω

〈f(·, ω),
∂φ

∂xi
〉 dω =

∫
Ω

〈 ∂f
∂xi

, φ〉 dω := 〈
∫

Ω

∂f

∂xi
dω, φ〉 . �

More generally, the operator ∂/∂xi in the theorem and its proof can in fact be replaced
by any continuous linear operator T on generalized functions with a dual T ′:

〈Tg, φ〉 = 〈g, T ′φ〉 =

∫
Ω

〈f(·, ω), T ′φ〉 dω =

∫
Ω

〈Tf, φ〉 dω := 〈
∫

Ω

Tf dω, φ〉 .

The dual T ′ of T will be guaranteed to exist if the underlying space of test functions is
reflexive, such as that of the compactly-supported smooth functions, D = C∞c (X). For
example, T could be taken to be the Fourier transform operator.
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3 Application to integrable functions

The deceptively easy result of Theorem 2.4 might appear to be a tautology: the inter-
change of the action 〈·, ·〉 and the integral

∫
Ω

is, after all, built into the abstract definition
(2).

Fortunately, the theorem does have real content for functions f ∈ L1(X × Ω) inte-
grable under Lebesgue measure. The abstract definition of

∫
Ω
f(x, ω) dω, as a generalized

function, when interpreted as an ordinary function, coincides with actual integral of f
over Ω, by virtue of Fubini’s theorem, which is established for integrable functions.

Furthermore, integrable functions always satisfy Criterion 2.2, for a convergent se-
quence of test functions must be uniformly bounded on all of X.

If the space of test functions is D = C∞c (X) (the infinitely-differentiable functions
with compact support), even just local integrability suffices. That is:

Criterion 3.1 (Local integrability). f : X × Ω→ R is a measurable function, and∫
K

∫
Ω

|f(x, ω)| dω dx <∞ , for any compact set K ⊂ X.

An important case of this situation is when x 7→
∫

Ω
|f(x, ω)| dω is continuous: it is

then, of course, locally integrable.
These simple observations already cover most applications, which do not involve

“nasty” Wierstrass-like functions, but only functions that are nice (and smooth) per-
haps except at a finite or countable number of points. On the other hand, this does not
mean the theory just developed is useless; indeed, as the examples in the next section
show, even seemingly minor singularities can turn out to be significant in the final result.

3.1 Relaxing the continuity criterion

If we are unsure whether the assumption of Criterion 2.2 holds, we could try to ignore it,
with the penalty that we would have to deal with discontinuous functionals. But if the
derivative of a discontinuous functional g is defined formally by

〈 ∂g
∂xi

, φ〉 = −〈g, ∂φ
∂xi
〉 for every test function φ,

just as it is for continuous functionals, then we readily see that the proof of Theorem 2.4
survives.

If a functional g is not known to be continuous, then the consequence is that we would
not be able to find a sequence of generalized functions gn converging to g (in the sense
that 〈gn, φ〉 → 〈g, φ〉 for every test function φ). However, if we do manage to find such a
sequence, then we can deduce that g is in fact continuous (by sequential completeness of
the space of distributions).

Alternatively, we might be able to compute g(x) =
∫

Ω
f(x, ω) dω and discover directly

that it is a continuous functional without verifying Criterion 2.2 a priori. It even works
to first calculate ∂g/∂xi formally by differentiation under the integral sign, and discover
that it is continuous. Then we can also deduce after-the-fact that g must be continuous
too, by the theorem of distribution theory that anti-derivatives of any generalized function
exist as generalized functions.
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3.2 Classical differentiability

Finally, we have to question whether the derivative of generalized functions obtained
in Theorem 2.4 has anything to do with usual notion of differentiation. The answer is
affirmative:

Theorem 3.2 (Differentiation under the integral sign). Let f : X×Ω→ R be an ordinary
function such that the generalized derivatives ∂f/∂xi are represented by ordinary functions
(for each ω ∈ Ω), and both f and ∂f/∂xi are locally integrable as in Criterion 3.1. Then
almost everywhere on X,

∂

∂xi

∫
Ω

f(x, ω) dω =

∫
Ω

∂

∂xi
f(x, ω) dω

where classical differentiation is used on both sides of the equation.
Of course, if both sides are continuous in x, then equality holds for every x ∈ X.

Proof. To avoid ambiguity, we temporarily distinguish generalized derivatives from ordi-
nary derivatives by the addition of brackets: [∂/∂xi].

Set g(x) =
∫

Ω
f(x, ω) dω, and let φ be a test function supported on a compact set K.

Then we have

〈
[
∂g

∂xi

]
, φ〉 =

∫
Ω

〈
[
∂f

∂xi

]
, φ〉 dω (Theorem 2.4)

=

∫
Ω

∫
K

∂f(x, ω)

∂xi
φ(x) dx dω (Theorems C.2, C.4)

=

∫
K

(∫
Ω

∂f(x, ω)

∂xi
dω

)
φ(x) dx (used local integrability).

Thus [
∂g

∂xi

]
= h :=

∫
Ω

∂

∂xi
f(·, ω) dω ,

in the sense that the locally-integrable function h represents the generalized function
[∂g/∂xi] by integration. Now apply Theorem C.4 to g and h. �

Compare with Theorem A.1. Loosely speaking, that theorem requires the integral∫
Ω
|∂f/∂xi| dω to be a locally bounded function of the parameter; here we only demand

the integral to be locally integrable, which is a slightly weaker requirement. (For instance,
the function f(x, y) =

√
|x− y| for x, y ∈ [0, 1] fails the first requirement but satisfies the

second.)
A nice advantage of our theory though, from the point of the lazy physicist or engineer,

is that it allows us to neglect checking the integrability conditions beforehand, and to just
go ahead and differentiate under the integral sign formally. If the result of the calculation
“makes sense” (i.e. the relevant integrals converge), then the operations will be justified.
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4 Computational examples

4.1 Fundamental Theorem of Calculus

To warm-up, let us look at the following amusing, if hopelessly roundabout, demonstration
of the Fundamental Theorem of Calculus. For f continuous, and a ≤ x ≤ b, we have

d

dx

∫ x

a

f(t) dt =
d

dx

∫ b

a

1(t ≤ x)f(t) dt =

∫ b

a

∂

∂x
f(t) 1(x ≥ t) dt

=

∫ b

a

f(t) δ(x− t) dt = f(x) ,

where δ, is of course, the (in)famous Dirac delta function, and 1(·) denotes an indicator.
(In effect, 1(x ≥ t) reduces to H(x − t), where H is the Heaviside step function, so its
derivative is δ(x− t).)

Actually, our derivation is not quite rigorous, though the method does seem to “work”.
However, rather than obsessing over a trivial calculation, we defer the explanation of the
rigorous method to the next examples, where we can make serious blunders when we fail
to understand the theory correctly — or at least when we are not careful.

4.2 Smooth integrands

Consider the well-known Gamma function: Γ(x) =
∫∞

0
e−ttx−1 dt for x > 0. Since Γ is

continuous (and the integrand is non-negative), it satisfies Criterion 3.1, and therefore
differentiation under the integral sign is allowed:

dk

dxk
Γ(x) =

∫ ∞
0

e−t
∂k

∂xk
tx−1 dt .

More generally, let f : X × Ω → R be an integrand that is smooth in the parameter,
satisfying Criterion 3.1; then we can differentiate (weakly) under the integral sign as
many times as we want. But there is no guarantee that ∂f/∂xi has to be integrable over
Ω in the Lebesgue sense — a condition in Theorem 3.2 for classical differentiability of∫

Ω
f(x, ω) dω.
Such anomalies happen, for example, with the function f(x, y) = y−2(1 − cosxy) for

y > 0 and x ∈ R. The integral
∫∞

0
f(x, y) dy converges (and is a continuous function of x

— see Theorem A.2), but∫ ∞
0

∂f

∂x
dy = “

∫ ∞
0

sinxy

y
dy ”

?
= lim
s→∞

∫ s

0

sinxy

y
dy =

π

2
sgn(x)

does not exist as a real Lebesgue integral. But it is not hard to see that the interpretation
of the divergent integral as the improper limit, as written above, is correct. Here are the
gory details:

Let φ be a smooth function supported on a compact interval [a, b]; then

〈
∫ ∞

0

∂f

∂x
dy, φ〉 := −

∫ ∞
0

∫ b

a

f(x, y)
dφ

dx
dx dy = − lim

s→∞

∫ s

0

∫ b

a

f(x, y)
dφ

dx
dx dy ,
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and we can change the outer integral to a limit of integrals since f · dφ/dx is a L1([a, b]×
(0,∞)) function. Next, we perform an integration by parts, then switch the order of
integration, which is allowed since (∂f/∂x)·φ is continuous on the compact set [a, b]×[0, s]
(and so has finite integral there):

= lim
s→∞

∫ s

0

∫ b

a

∂f

∂x
φ(x) dx dy = lim

s→∞

∫ b

a

(∫ s

0

∂f

∂x
dy

)
φ(x) dx .

Finally, we can move the limit to inside the first integral since |
∫ s

0
sin xy
y dy| is uniformly

bounded for all x ∈ [a, b] and s ∈ (0,∞):

=

∫ b

a

(
lim
s→∞

∫ s

0

∂f

∂x
dy

)
φ(x) dx .

This verifies the claim that
∫∞

0
∂f
∂x dy is the locally-integrable function lim

s→∞

∫ s
0

sin xy
y dy.

We leave it to the reader to ponder the proper interpretation of this apparent nonsense:

π δ(x) =
d

dx

(π
2

sgn(x)
)

=
d

dx

∫ ∞
0

sinxy

y
dy =

∫ ∞
0

∂

∂x

sinxy

y
dy =

∫ ∞
0

cos(xy) dy .

4.3 Another counterexample

This example comes from [Gelbaum]: let

f(x, y) =
x3

y2
e−x

2/y , x ∈ R, y ∈ (0, 1]

∂f(x, y)

∂x
=

3x2

y2
e−x

2/y − 2x4

y3
e−x

2/y

Theorem 3.2 applies. Computing directly, we find

d

dx

∫ 1

0

f(x, y) dy =
d

dx
(xe−x

2

) = e−x
2

(1− 2x2) =

∫ 1

0

∂f(x, y)

∂x
dy

for all x 6= 0, but the left- and right-hand sides do not agree at the single point x = 0.
Of course, there is no contradiction, for Theorem 3.2 only asserts the equality of the
derivatives almost everywhere.

In the context of Theorem A.1, observe that |∂f/∂x| is integrable (with respect to y)
when x 6= 0, but is not integrable when x = 0. Moreover, the dominating factor Θ(y) can
be found for this integrand if x is restricted to a compact set not including the origin, but
not if x can get arbitrarily close to the origin.

4.4 Integrands that are step functions

Next, we come to a detailed example involving singularities described by delta functions.
Let Ω = [0, 1] (with the elements denoted by the variable y), and c ≥ 0 be a constant.

Define

f(x, y) = y 1(xy > c) , g(x) =

∫ 1

0

f(x, y) dy , for x ∈ R and y ∈ [0, 1].
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For comparison, we first compute g and its derivative directly, without differentiation
under the integral sign:

g(x) =
1

2

(
1−

( c
x

)2
)

1(x > c) ,

dg(x)

dx
=

1

x

( c
x

)2

1(x > c) (except at x = c).

Next follows a tempting, but unrigorous — and totally wrong — computation. (I
illustrate these examples because I made the same mistakes before I fully absorbed the
proper theory.)

Blunder: We try to apply the chain rule to the Heaviside step function:

dg

dx
=

∫ 1

0

∂

∂x
y H(xy − c) dy =

∫ 1

0

y2 δ(xy − c) dy = y2
∣∣
xy=c

=
( c
x

)2

,

for 0 < c
x < 1.

Even without knowing the true solution for dg/dx, we know that the answer just
obtained must be wrong because it has the wrong order in x and fails a dimensional
analysis: if y is unitless, but both x and c have units of distance, then g is also unitless,
and thus dg/dx must have units of inverse distance.

It turns out that the use of the chain rule is correct, but the substitution∫ 1

0

γ(y) δ(xy − c) dy → γ(y)
∣∣∣
xy−c=0

= γ
( c
x

)
is incorrect. To understand this intuitively, recall that δ function appeared from partial
differentiation with respect to x; that means the standard properties of the delta function
apply only with respect to the variable x: e.g.∫ ∞

−∞
γ(x) δ(x− a) dx = γ(a)

for continuous functions γ. But we were integrating with respect to the variable y, the
integrand γ(y) δ(xy − c). Indeed, if we write δ(xy − c) ≡ δ(x− c/y), we see that∫ 1

0

δ(xy − c) dy =

∫ 1

0

δ
(
x− c

y

)
dy 6= c

x
,

because now y−1 in the argument of the delta function causes the integral to accumulate
values differently than if the argument had been y itself.

The correct value of the integral is, instead, suggested by a differential change of
variables:∫ 1

0

y δ
(
x− c

y

)
dy =

∫ ∞
c

c

u
δ(x− u)

c

u2
du substitute u =

c

y
, dy = − c

u2
du

=
c2

u3

∣∣∣∣
u=x

if x ≥ c, zero otherwise,

yielding the desired answer (with the dimensional inconsistency fixed).
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Having illustrated this pitfall, we proceed with the rigorous computation. Firstly, f
satisfies Criterion 3.1, so differentiation under the integral is allowed. Secondly, to dispel
any doubts about the validity of ∂f/∂x = y δ(x− c/y), we compute it formally. For any
test function φ (with compact support): we have, indeed,

〈∂f
∂x
, φ〉 = −〈f, dφ

dx
〉 = −

∫ ∞
−∞

y 1(xy > c)
dφ

dx
dx = −y

∫ ∞
c/y

dφ

dx
dx = y φ

( c
y

)
.

Now, applying Theorem 2.4 and performing the same differential change of variables
u = c/y — it is legitimate now that the integrals are really Lebesgue integrals — we find:

〈dg
dx
, φ〉 =

∫ 1

0

〈∂f
∂x
, φ〉 dy =

∫ 1

0

y φ
( c
y

)
dy =

∫ ∞
c

c2

u3
φ(u) du .

But we recognize the last integral as the functional, evaluated at φ, corresponding to the
integrable function x 7→ c2x−3 1(x > c).

It is again instructive to examine what Theorem A.1 would say in this situation.
Clearly, that theorem cannot possibly apply here, because ∂f/∂x = 0 whenever the
derivative exists in the classical sense, and so integrating this näıvely would yield zero
identically.

Theorem A.1 asserts that it applies if f is everywhere differentiable with respect to
x and almost every ω, but here we really have f being almost everywhere differentiable
with respect to x for every ω, These two conditions are not the same. In fact, although
both X and Ω happened to be subsets of R in the current example, the roles they play
are not symmetric. Theorem A.1 uses no measure theory on X-space, but only on Ω-
space, so naturally, only in Ω-space do the notions of “almost everywhere” enter into the
hypotheses and the conclusions of the theorem.

Even if we arbitrarily redefine the partial derivatives to be zero whenever they do not
exist, it is easy to see, in this example, that the difference quotient — see the remarks
after Theorem A.1 — cannot be dominated.

Another way to understand this situation, is if we decompose ∂f/∂xi into a sum

∂

∂xi
f(x, ω) = p(x, ω) + q(x, ω) ,

of an ordinary L1(X × Ω) function p and a generalized function q, then

∂

∂xi

∫
Ω

f(x, ω) dω =

∫
Ω

p(x, ω) dω +

∫
Ω

q(x, ω) dω ,

where the far right term is exactly the contribution to the derivative that would be missed
out when differentiating classically under the integral sign.

4.5 The Black-Scholes pricing formula

Here we present an applied calculation from the field of mathematical finance. (This is one
of the problems that I had been working on, leading me to investigate more thoroughly
differentiation under the integral.)

Consider the function

P (x) = e−rτ E[max(xY −K, 0)] , x > 0 , Y = e(r− 1
2σ

2)τ+σ
√
τZ , Z ∼ Normal(0, 1) .
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which gives the “arbitrage-free” price of a European call option for a stock, given the
current price of the stock x, modelled as a geometric Brownian motion. (The parameter
r is the interest rate, σ is the volatility of the stock, τ is the time from the present to the
maturity of the European call option, and K is its strike price.)

The expectation can of course be rewritten as an integral over R of the integrand
multiplied by the density of a standard normal distribution, but for the sake of variety,
let us stick with the form given above. (Thus, here Ω is taken to be some probability
space.)

The function P has the analytical form given by

P (x) = xΦ(d+)−Ke−rτΦ(d−) , d±(x) =
(r ± 1

2σ
2)τ + log(x/K)

σ
√
τ

.

Calculating dP/dx is somewhat messy from this formula; we start instead with a
differentiation under the expectation sign:

dP

dx
= e−rτ E

[
∂

∂x
max(xY −K, 0)

]
= e−rτ E

[
Y 1(xY > K)

]
= e−

1
2σ

2τ E
[
e−σ
√
τZ 1(Z > −d−)

]
= Φ(d+) .

The exchange of differentiation and expectation is justified by the following estimate:∫ b

a

E
[
|max(xY −K, 0)|

]
dx ≤

∫ b

a

E[xY ] dx <∞ , 0 < a < b ,

and Criterion 3.1 is satisfied2.
To obtain d2P/dx2 = Φ(d+)/(xσ

√
τ), it is actually much easier to differentiate dP/dx

directly. But to illustrate the techniques, we do a differentiation under the expectation
sign again:

d2P

dx2
=

d

dx

dP

dx
= e−rτ E

[
∂

∂x
Y 1(xY > K)

]
= e−rτ E

[
Y δ(x−K/Y )

]
= e−rτ E

[
KU−1 δ(x− U)

]
, U = K/Y .

At this point we have no choice but to express the expectation as an integral over the
reals, because of the involvement of a delta function. More formally, if we suppose that
d2P/dx2 is a locally-integrable function h, then we must show that

∫∞
0
h(x)ψ(x) dx =

Ke−rτ E
[
U−1ψ(U)

]
for all test functions ψ, and that obviously necessitates expanding

the right-hand side as a Lebesgue integral. The calculation is not too hard if we observe
that logU has the distribution Normal(logK − (r − 1

2σ
2)τ, σ2τ), so that

Ke−rτ E
[
δ(x− U)

U

]
= Ke−rτ

∫ ∞
0

δ(x− u)

u

density for log-normal︷ ︸︸ ︷
exp(− 1

2d−(u)2)

u
√

2π σ
√
τ

du =
Ke−rτ

x2
Φ′(d−(x)) .

2We can also verify that the hypotheses of Theorem 3.2 indeed hold for the first derivative, but the
conclusions from that theorem, namely that the classical derivative exists and equals the generalized
derivative, are already immediate from our calculated results. But Theorem 3.2 does not apply for the
second derivative, because ∂Y 1(xY > K)/∂x is not an ordinary function.

11



The latter expression looks different from the direct formula for d2P/dx2, but they are in
fact equal.

We have played fast-and-loose with delta functions in the last calculation, but clearly
it abbreviates the rigorous arguments we have already made. The reader who is still
unsure about the method is invited to repeat the explicit calculation with functionals.

A Differentiation under the integral sign with classical
derivatives

Theorem A.1 (Differentiation under the integral sign). Let X be an open subset of Rm,
and Ω be a measure space. Suppose that the function f : X×Ω→ R satisfies the following
conditions:

1. f(x, ω) is an integrable function of ω for each x ∈ X.

2. For almost all ω ∈ Ω, the derivative ∂f(x, ω)/∂xi exists for all x ∈ X.

3. There is an integrable function Θ: Ω → R such that |∂f(x, ω)/∂xi| ≤ Θ(ω) for all
x ∈ X.

Then
∂

∂xi

∫
Ω

f(x, ω) dω =

∫
Ω

∂

∂xi
f(x, ω) dω .

This result is proved by (what else?) the Lebesgue Dominated Convergence Theorem.
A more precise condition, in place of (3) above, that comes out of the proof of the

theorem, is that the difference quotient (f(x+ tei, ω)− f(x, ω))/t must be dominated by
some Θ(ω) for all x and t.

For completeness, we also include the following analogous result for continuity:

Theorem A.2 (Continous dependence on integral parameter). Let X be an open subset
of Rm (or any metric space), and Ω be a measure space. Suppose that the function
f : X × Ω→ R satisfies the following conditions:

1. f(x, ω) is a measurable function of ω for each x ∈ X.

2. For almost all ω ∈ Ω, f(x, ω) is continuous in x.

3. There is an integrable function Θ: Ω→ R such that |f(x, ω)| ≤ Θ(ω) for all x ∈ X.

Then
∫

Ω
f(x, ω) dω is a continuous function of x.
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[Lützen] does not develop any mathematical theory, but I happened upon it researching
the current problem. It is an interesting look into the intuition and motivation behind
the theory of generalized functions.

[Talvila] is an interesting, light-going paper giving the exact conditions for exchanging
classical differentiation and integration, in terms of Henstock integrals that can integrate
more derivatives. The results of that paper are essentially souped-up versions of our
Theorem 3.2, and, remarkably, the techniques used there are quite analogous to our
distributional methods. On the other hand, the restriction to classical differentiation in
that paper means that, the theory cannot make sense of discontinuities in the integrand,
or divergent integrals, which I think, are probably more important in applications than
derivatives that are not Lebesgue-integrable.

C List of supporting theorems

Here is a list of some of the theorems we have appealed to implicitly but may not be
familiar to the reader. (Actually, I too was not too familiar with them before I started
writing this article.)

Theorem C.1 (Fundamental Theorem of Calculus for Lebesgue integrals). Let f be a
Lebesgue-integrable function on a compact interval [a, b]. If

G(x) =

∫ x

a

f(t) dt , for x ∈ [a, b] ,

then G is absolutely continuous, and G′ = f almost everywhere. Moreover, if f = g′ for
an absolutely continous g, then G = g + c for some constant c.

Proof. See, for example, Theorem 3.35 in [Folland].

Theorem C.2 (Integration by Parts). Let X be an open set in Rm. The usual integration-
by-parts formula is valid for locally-integrable functions f : X → R absolutely continuous3

3Here and elsewhere, “absolutely continuous in xi” really means “absolutely continuous in xi when
the other variables xj , j 6= i, are held fixed, after some modification of the function on a set of measure
zero.
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in xi, with ∂f/∂xi locally integrable, and smooth test functions φ : X → R vanishing
outside a compact set in X:

〈 ∂f
∂xi

, φ〉 =

∫
X

∂f(x)

∂xi
φ(x) dx = −

∫
X

f(x)
∂φ(x)

∂xi
dx = −〈f, ∂φ

∂xi
〉 .

Thus the generalized derivative agrees with the ordinary derivative for such f .

Proof. This statement appears in [Schwartz], Ch. 2, Sect. 5, Theorem V, part (1).
It can be proven by applying Theorem C.1 and the integration by parts formula for

Lebesgue-Stieljes integrals, Theorem 3.36 in [Folland].

Warning. the condition “f is absolutely continuous” cannot be replaced by the weaker
condition that “f ′ exists almost everywhere and is locally integrable”. The same sort
of restriction enters into the second part of Theorem C.1, where we need to make sure
that g is absolutely continuous before concluding G = g + c. We do not even have to try
hard to find pathological counterexamples to show this necessity: if H is the Heaviside
step function, then H ′ = 0 classically, but of course we already know that its generalized
derivative is the Dirac delta. In terms of Theorem C.1: H is not absolutely continuous
— not even continuous — and cannot be expressed as the integral of its derivative.

(Even if a function is continuous, Theorem C.1 can fail: the standard counterexample
being the Cantor function (also known as the “Devil’s staircase”) with zero classical
derivative almost everywhere.)

Theorem C.3. If f is any generalized function on X, an open set in Rm, then the
partial differential equation ∂u/∂xi = f has infinitely many generalized solutions u, each
differing by some generalized function independent of xi.

Proof. See [Schwartz], Ch. 2, Sect. 5, Theorem IV.

Theorem C.4. Let X be an open set in Rm. If a locally-integrable function f : X → R has
a generalized derivative represented by a locally-integrable function h : X → R, then f is
absolutely continuous in x1, and it admits an ordinary derivative of h almost everywhere.
(This result is a converse to Theorem C.2.)

Proof. See [Schwartz], Sect. 5, Theorem V, part (2). We reproduce the proof here:
To avoid ambiguity, we temporarily distinguish generalized derivatives from ordinary

derivatives by the addition of brackets: [∂/∂xi].
Define an indefinite integral G(x) =

∫
h(x) dxi. Then G(x) is absolutely continuous

in xi, and ∂G/∂xi = h almost everywhere. It is also true that [∂G/∂xi] = h.
From the latter statement, we know from Theorem C.3 that G−f = c where c is some

generalized function independent of xi. Since G − f = c is a locally-integrable function,
we must have ∂c/∂xi = 0 using ordinary derivatives. It follows that ∂f/∂xi exists almost
everywhere, and ∂f/∂xi = ∂G/∂xi = h. The function f is absolutely continuous in xi
since f = G− c and both G and c are absolutely continuous in xi. �

Theorem C.5. The differentiation operator ∂/∂xi is a continuous mapping from gener-
alized functions to generalized functions.

Proof. See [Schwartz], Ch. 3, Sect. 5.

Theorem C.6. The spaces D and D′ are reflexive.
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Proof. See [Schwartz], Ch. 3, Sect. 3, Theorem XIV.
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